Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14487–14494 | Cite as

High-performance potassium sodium niobate-based lead-free materials without antimony

  • Yi Ding
  • Ting Zheng
  • Ruishi Xie
  • Xiang Lv
  • Jie Yin
  • Jiagang Wu
Article
  • 63 Downloads

Abstract

(1−xy)(K0.45Na0.55)NbO3yBi0.5Na0.5ZrO3xBaHfO3–0.2%MnO2 ceramics without antimony have been fabricated by the conventional solid-state method, and influences of Bi0.5Na0.5ZrO3 and BaHfO3 contents on their structure and electrical properties are studied. Composition modification can result in the formation of rhombohedral–orthorhombic–tetragonal phase coexistence in the ceramics (y = 0.04 and 0.01 ≤ x ≤ 0.02 as well as x = 0.01 and 0.04 ≤ y ≤ 0.045). In the region of this phase boundary, the ceramics exhibit both enhanced piezoelectric properties (d33 ~ 385 pC/N, kp ~ 51%, S ~ 0.157%) and high Curie temperature (TC ~ 320 °C). Especially, good comprehensive properties and the absence of antimony make the material more environmentally friendly.

Notes

Acknowledgements

Authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC Nos. 51722208 and 51332003), the Key Technologies Research and Development Program of Sichuan Province (No. 2018JY0007) and the Fundamental Research Funds for the Central Universities (2012017yjsy111). Authors thank Mrs. Wang Hui (Analytical & Testing Center of Sichuan University) for performing the FE-SEM measurements.

References

  1. 1.
    B. Wu, J. Wu, D. Xiao, J. Zhu, Modification of both d 33 and T C in a potassium–sodium niobate ternary system. Dalton Trans. 44, 21141–21152 (2015)CrossRefGoogle Scholar
  2. 2.
    G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)CrossRefGoogle Scholar
  3. 3.
    S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)CrossRefGoogle Scholar
  4. 4.
    J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)CrossRefGoogle Scholar
  6. 6.
    P. Bijumon, V. Kohli, O. Parkash, M. Varma, M. Sebastian, Dielectric properties of Ba5MTi3A7O30 [M = Ce, Pr, Nd, Sm, Gd, Dy and Bi; A = Nb, Ta] ceramics. Mater. Sci. Eng. B 113(1), 13–18 (2004)CrossRefGoogle Scholar
  7. 7.
    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRefGoogle Scholar
  10. 10.
    D. Lin, K. Kwok, H.L. Chan, Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3 lead-free ceramics. J. Appl. Phys. 106(3), 034102 (2009)CrossRefGoogle Scholar
  11. 11.
    P. Palei, P. Kumar, Effect of silver content on the phase transition and electrical properties of 0.95[(K0. 5Na0. 5)NbO3]–0.05LiSbO3 ceramics. Solid State Sci. 14(9), 1338–1342 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Zhao, R. Huang, R. Liu, X. Wang, H. Zhou, Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na, K)NbO3 ceramics by optimizing sintering temperature. Ceram. Int. 39(1), 425–429 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Yuan, J. Wu, T. Hong, X. Lv, X. Wang, X. Lou, Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1 – xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics. J. Appl. Phys. 117(8), 239–4129 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)CrossRefGoogle Scholar
  15. 15.
    P. Palei, P. Kumar, D.K. Agrawal, Structural and electrical properties of microwave processed Ag modified KNN-LS ceramics. J. Microw. Power Electromagn. Energy 46(2), 76–82 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Zheng, J. Wu, D. Xiao, Strong piezoelectricity in (1 −x)(K0.4Na0.6)(Nb0.96Sb0.04)O3xBi0.5K0.5Zr1–ySnyO3 lead-free binary system: identification and role of multiphase coexistence. ACS Appl. Mater. Interface 7(10), 5927–5937 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Wang, Y. Hou, H. Ge, M. Zhu, H. Wang, H. Yan, Sol–gel synthesis and characterization of lead-free LNKN nanocrystalline powder. J. Cryst. Growth 310(22), 4635–4639 (2008)CrossRefGoogle Scholar
  18. 18.
    B.P. Zhang, J.F. Li, K. Wang, H. Zhang, Compositional dependence of piezoelectric properties in NaxK1–xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(5), 1605–1609 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Lv, R. Zuo, Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J. Alloys Compd. 560, 62–66 (2013)CrossRefGoogle Scholar
  20. 20.
    W. Liang, W. Wu, D. Xiao, J. Zhu, Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J. Am. Ceram. Soc. 94(12), 4317–4322 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Cheng, J. Wu, T. Zheng, Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J. Alloys Compd. 610, 62–66 (2013)Google Scholar
  22. 22.
    X. Wang, J. Wu, X. Cheng, B. Zhang, J. Zhu, D. Xiao, Compositional dependence of phase structure and electrical properties in (K0.50Na0.50)0.97Bi0.01(Nb1 – xZrx)O3 lead-free ceramics. Ceram. Int. 39(7), 8021–8024 (2013)CrossRefGoogle Scholar
  23. 23.
    W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0.5K0.5)NbO3–LiSbO3 lead-free piezoelectric ceramics. Physica B 405(7), 1918–1921 (2010)CrossRefGoogle Scholar
  24. 24.
    R. Zuo, C. Ye, X. Fang, Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3–BiScO3 ceramics. Jpn. J. Appl. Phys. 46, 6733–6736 (2007)CrossRefGoogle Scholar
  25. 25.
    F. Li, D. Xiao, J. Wu, Z. Wang, C. Liu, J. Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5) ZrO3 lead-free ceramics with a sintering aid of ZnO. Ceram. Int. 40, 14601–14605 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Feng, D. Xiao, J. Wu, F. Li, M. Xiao, J. Zhu, Influence of K/Na ratio on phase structure and electrical properties of 0.96 (KxNa1–x)NbO3–0.04(Bi0.5Na0.5)ZrO3 lead-free ceramics. J. Electroceram. 34, 142–149 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J. Mater. Chem. C. 2, 8796 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138(47), 15459–15464 (2016)CrossRefGoogle Scholar
  29. 29.
    Q. Liu, J.F. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang, L. Li, Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C. 6, 1116 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Tao, J. Wu, T. Zheng, X. Wang, X. Lou, New (1 – x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: phase boundary and their electrical properties. J. Appl. Phys. 118(4), 044102 (2015)CrossRefGoogle Scholar
  31. 31.
    X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, New lead-free piezoelectric ceramics based on (K0.48Na0.52)(Nb0.95Ta0.05)O3–Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3. Dalton Trans. 43(9), 3434–3442 (2014)CrossRefGoogle Scholar
  32. 32.
    X. Lv, J. Wu, S. Yang, D. Xiao, J. Zhu, Identification of phase boundaries and electrical properties in ternary potassium–sodium niobate-based ceramics. Appl. Mater. Interfaces 8, 18943–18953 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Wang, F. Yao, J. Koruza et al., Electromechanical properties of CaZrO3 modified (K, Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions. J. Am. Ceram. Soc. 100, 2116–2122 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceSichuan UniversityChengduPeople’s Republic of China
  2. 2.Analytical and Testing CenterSouthwest University of Science and TechnologyMianyangPeople’s Republic of China

Personalised recommendations