Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 17, pp 14406–14415 | Cite as

Metallic/chalcogen dual phase effects on dielectric relaxations, resonance and spectroscopic impedance in amorphous chalcopyrite CuxInyGa10Se70−xTe20−y thin films

  • Harkawal SinghEmail author
  • Amardeep BhartiEmail author
  • Navdeep Goyal
  • P. S. Gill


Copper Indium Gallium Diselenide (CIGS) is a well-known chalcopyrite photovoltaic material for its highest efficiency and flexibility. It is necessary to maintain this technology economic and affordable for better commercial use without affecting performance. We fabricate the structurally complex, the pentanary CuxInyGa10Se70−xTe20−y (CIGST) composition in bulk and thin film form through economic melt-quench and thermal evaporation technique respectively to enhance the light trapping centers by obviating unnecessary reflection through structural complexities. We are first to report the frequency dependent optical parameters and dielectric response of compounds having composition varied from metallic rich phase to chalcogen rich phase at around 10% of constant Gallium to understand their interaction in an electromagnetic field through UV–Vis spectroscopy and LCR meter experiment. Enhanced absorbance edge with multiple band gap has translated the divergence of complex dielectric function from the standard Drude model at optical (higher) frequencies. Multiple relaxations occur along with the dipolar relaxation at electrical (lower) frequencies depicts the varied Debye behavior. Photo-response has been measured through impedance spectroscopy which shows a loss in the order of 3 KΩ under illumination depicts the significant charge carrier generation, led to the excellent photovoltaic properties of CIGST cells.



The authors acknowledge the support given by University Grants Commission (UGC) and Department of Physics, Panjab University, Chandigarh for major research project (F.No-42-898/2-13(SR)).


  1. 1.
    S.R. Meher, D.K. Kaushik, A. Subrahmanyam, J. Mater. Sci. 28, 6033–6046 (2017)Google Scholar
  2. 2.
    I. Aguilera, P. Palacios, P. Wahnon, Sol. Energy Mater. Sol. C 94, 1903–1906 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Siebentritt, M. Igalson, C. Persson, S. Lany, Prog. Photovolt. 18, 390–410 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Sun, J. Ma, N. Yao, Z. Huang, J. Chu, J. Mater. Sci. 27, 9124–9130 (2016)Google Scholar
  5. 5.
    Y. Hamakawa, Thin Solid Films 28–31, 163–209 (2004)Google Scholar
  6. 6.
    I. Chambouleyron, J.M. Martínez, Optical Properties of Dielectric and Semiconductor Thin Films, (Academic Press, New York, 2001)Google Scholar
  7. 7.
    M.I. Alonso, K. Wakita, J. Pascual, M. Garriga, N. Yamamoto, Phys. Rev. B 63, 075203 (2001)CrossRefGoogle Scholar
  8. 8.
    P.D. Paulson, R.W. Birkmire, W.N. Shafarman, J. Appl. Phys. 879, 94 (2003)Google Scholar
  9. 9.
    S.H. Han, F. Hasoon, A.M. Hermann, D.H. Levi, Appl. Phys. Lett. 91, 021904 (2007)CrossRefGoogle Scholar
  10. 10.
    M.L. Brongersma, Y. Cui, S. Fan, Nat. Mater. 13 (2014)
  11. 11.
    C. Lei, M. Li, A. Rockett, I.M. Robertson, J. Appl. Phys. 101, 024909 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Singh, A. Bharti, A. Kumar, N. Goyal, P.S. Gill, Mater. Focus 6, 611–617 (2017)CrossRefGoogle Scholar
  13. 13.
    M.I. Ojovan, W.E. Lee, J. Phys. Condens. Matter 18, 11507–11520 (2006)CrossRefGoogle Scholar
  14. 14.
    P.D. Paulson, R.W. Birkmire, W.N. Shafarman, J. Appl. Phys. 94, 879 (2003)CrossRefGoogle Scholar
  15. 15.
    J. Kaneshiro, N. Gaillard, R. Rocheleau, E. Miller, Sol. Energ. Mater. Sol. C 94, 12–16 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Dongol, Egypt J. Solids. 25, 33 (2002)Google Scholar
  17. 17.
    R.E. Denton, R.D. Campbell, S.G. Tomlin, J. Phys. D 5, 852 (1972)CrossRefGoogle Scholar
  18. 18.
    V. Lucarini, J.J. Saarinen, K.E. Peiponen, E.M. Vartiainen, Kramers-Kronig Relations in Optical Materials Research (Springer, Berlin, 2005)Google Scholar
  19. 19.
    D.B. Tanner, Phys. Rev. B 91, 035123 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Abkowitz, Polym. Eng. Sci. 24, 1149 (1984)CrossRefGoogle Scholar
  21. 21.
    S. Theodoropoulou, D. Papadimitriou, K. Anestou, C.H. Cobet, N. Esser, Semicond. Sci. Technol. 24, 015014 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Leo, Semicond. Sci. Technol. 13, 249–263 (1998)CrossRefGoogle Scholar
  23. 23.
    P.P. Horley, Y.V. Vorobiev, Superficies y Vacio 17, 12–16 (2004)Google Scholar
  24. 24.
    S.J. Fonash, Solar Cell Device Physics (Academic Press, New York, 1981)Google Scholar
  25. 25.
    L. Mohammed, A.R. Mat Isa, A. Musa, T. Mahmood, M.A. Saeed, Chalcogenide Lett. 13, 18 (2016)Google Scholar
  26. 26.
    M.L. Brongersma, Y. Cui, S. Fan, Nat. Mater. 13, 451–460 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Orfanidis, Electromagnetic Waves and Antennas, (Sophocles J. Orfanidis, 2016), p. 1.11Google Scholar
  28. 28.
    R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci. Rep. 5, 13645 (2015)CrossRefGoogle Scholar
  29. 29.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  30. 30.
    P.Q. Mantas, J. Eur. Ceram. Soc. 19, 2079–2086 (1999)CrossRefGoogle Scholar
  31. 31.
    Y.H. Liu, T. Fujita, D.P.B. Aji, M. Matsuura, M.W. Chen, Nat. Commun. 5, 3238 (2014)CrossRefGoogle Scholar
  32. 32.
    J.B. Jarvis, S. Kim, J. Res. Natl. Inst. Stan. 117 (2012)
  33. 33.
    R. Bergman, J. Mattsson, C. Svanberg, G.A. Schwartz, J. Swenson, Europhys. Lett. 64, 675–681 (2003)CrossRefGoogle Scholar
  34. 34.
    G.P. Johari, J. Chim. Phys. 82, 2–3 (1985)Google Scholar
  35. 35.
    C. Liu, E. Pineda, D. Crespo, Metals 5, 1073–1111 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Kitajima, F. Bertasi, K. Vezzu, E. Negro, Y. Tominaga, V.D. Noto, Phys. Chem. Chem. Phys. 15, 16626 (2013)CrossRefGoogle Scholar
  37. 37.
    R. Bergman, H. Jansson, J. Swenson, J. Chem. Phys. 132, 044504 (2010)CrossRefGoogle Scholar
  38. 38.
    S.A. Ali Shah, M.H. Sayyad, N. Nasr, R.A. Toor, S. Sajjad, H. Elbohy, Q. Qiao, J. Mater. Sci. 28, 6552–6559 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPanjab UniversityChandigarhIndia
  2. 2.Sri Guru Gobind Singh CollegeChandigarhIndia

Personalised recommendations