Skip to main content

Advertisement

Log in

Electrical effective parameters of the grains and the Montgomery's method in \(\hbox {Bi}_{1.65}\hbox {Pb}_{0.35}\hbox {Sr}_2\hbox {Ca}_{2.5}\hbox {Cu}_{3.5}\hbox {O}_y\) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper we have applied the Montgomery’s measurement method to \(\hbox {Bi}_{1.65}\hbox {Pb}_{0.35}\hbox {Sr}_2\hbox {Ca}_{2.5}\hbox {Cu}_{3.5}\hbox {O}_y\) ceramic samples, to study the behavior of the grains’ electrical effective parameters, such as: intrinsic effective anisotropy, \(t=\rho _c/\rho _{ab}\), the slope of the linear part in the temperature dependence of the ab-planes resistivity, \(A_{ab}=\varDelta \rho _{ab}/\varDelta T\), the weak links resistivity, \(\rho _{wl}\), and the orientation probability of the grains’ a-axes along a certain preferential direction, \(\gamma _{xa}\). Here, \(\rho _{ab}\), \(\rho _{c}\) and T are the main values of the resistivitity tensor and the measurement temperature, respectively. The samples were pressed uniaxially at three different compacting pressures and extracted from the pellets by cutting an slab along the cylinder axis. Samples cut in this way, exhibit almost an isotropic behavior in the transport properties. Moreover, the sample extracted from the pellet compacted at 488 MPa exhibits the best inter and intragranular properties. The effective intrinsic anisotropy of its grains has the lowest value in the sample set. These results can be used in the fabrication of this superconducting material for certain applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Govea-Alcaide, M. Hernández-Wolpez, A.J. Batista-Leyva, R.F. Jardim, P. Muné, Physica C 423, 51–56 (2005)

    Article  Google Scholar 

  2. H. C. Montgomery, J. Appl. Phys. 42, 2971–2975 (1971)

    Article  Google Scholar 

  3. B.F. Logan, S.O. Rice, R.F. Wick, J. Appl. Phys. 42, 2975–2980 (1971)

    Article  Google Scholar 

  4. L.J. van der Pauw, Philips Res. Rep. 16, 187–195 (1961)

    Google Scholar 

  5. D. Wasscher, Philips Res. Rep. 16, 301–306 (1961)

    Google Scholar 

  6. C.A.M. dos Santos, A. de Campos, M.S. da Luz, B.D. White, J.J. Neumeier, B.S. de Lima, C.Y. Shigue. J. Appl. Phys. 110, 083703 (2011)

    Article  Google Scholar 

  7. A. Cruz-García, E. Altshuler, J.R. Fernández-Gamboa, R.F. Jardim, O. Vázquez-Robaina, P. Muné, J. Mater. Sci. Mater. Electron. 28, 13058–13069 (2017)

    Article  Google Scholar 

  8. A. Cruz-García, P. Muné, Physica C 527, 74–79 (2016)

    Article  Google Scholar 

  9. A. Cruz-García, J.R. Fernández-Gamboa, E. Altshuler, R.F. Jardim, O. Vazquez-Robaina, P. Muné, J. Mater. Sci. Mater. Electron. 29, 6188–6199 (2018)

    Article  Google Scholar 

  10. P. Muné, E. Govea-Alcaide, R.F. Jardim, Physica C 384, 491–500 (2003)

    Article  Google Scholar 

  11. X. Yang, T.K. Chaki, Supercond. Sci. Technol. 6, 343–348 (1993)

    Article  Google Scholar 

  12. K. Kocabaş, M. Gökçe, M. Çiftçioğlu, Ö. Bilgili, J. Supercond. Nov. Magn. 23, 397–410 (2010)

    Article  Google Scholar 

  13. P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), Version 1.0, Release 2007/8 (ASM International, Materials Park, 2007)

    Google Scholar 

  14. C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature 365, 323–325 (1993)

    Article  Google Scholar 

  15. S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys. 61, 251–259 (1999)

    Article  Google Scholar 

  16. S. Safran, A. Kılıç, O. Ozturk, J. Mater. Sci. Mater. Electron. 28, 1799–1803 (2016)

    Article  Google Scholar 

  17. D. Pandey, R. Mahesh, A.K. Singh, V.S. Tiwari, Physica C 184, 135–143 (1991)

    Article  Google Scholar 

  18. A. Díaz, J. Maza, F. Vidal, Phys. Rev. B 55, 1209–1215 (1997)

    Article  Google Scholar 

  19. E. Govea-Alcaide, P. Muné, R.F. Jardim, Braz. J. Phys. 35, 680–688 (2005)

    Article  Google Scholar 

  20. E. Govea-Alcaide, R.F Jardim, P. Muné, Phys. Stat. Sol. 13, 2484–2493 (2005)

    Article  Google Scholar 

  21. T.T. Tan, S. Li, H. Cooper, W. Gao, H.K. Liu, S.X. Dou, Supercond. Sci. Technol. 14, 471–478 (2001)

    Article  Google Scholar 

  22. V.S. Kravtchenko, M.A. Zhuravleva, Y.M. Uskov, O.G. Potapova, N.A. Bogoljubov, P.P. Bezverkhy, L.L. Makarshin, Superlattices Microstruct. 21, 87–94 (1997)

    Google Scholar 

  23. D. Shi, M.S. Boley, U. Welp, J.G. Chen, Y. Liao, Phys. Rev. 40, 5255–5258 (1989)

    Article  Google Scholar 

  24. T. Fujii, T. Watanabe, A. Matsuda, Physica C 357–360, 173–176 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CAPES/MES-CUBA, Project 104/10. We thank the support of R. Packard (University of California at Berkeley) and all the help by F. Calderón-Piñar and O. García-Zaldivar (Group of Ferroelectricity and Magnetism, IMRE-Physics Faculty, University of Havana).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Muné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-García, A., Fernández-Gamboa, J.R., Altshuler, E. et al. Electrical effective parameters of the grains and the Montgomery's method in \(\hbox {Bi}_{1.65}\hbox {Pb}_{0.35}\hbox {Sr}_2\hbox {Ca}_{2.5}\hbox {Cu}_{3.5}\hbox {O}_y\) ceramics. J Mater Sci: Mater Electron 29, 14322–14327 (2018). https://doi.org/10.1007/s10854-018-9566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9566-2

Navigation