Abstract
Cobalt ferrites nanoparticles doped with gadolinium CoFe2−xGdxO4, referred to as CFGO (x = 0.0, 0.1, 0.3, 0.5 and 0.7) was achieved by glycine nitrate process. The phase confirmation and crystallite size were obtained from X-ray diffraction spectra and their variation with dopants content was determined. The Williamson–Hall plot was used to investigate the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CFGO nanoparticles. Further confirmation of the spinel structure was done by Fourier transform infrared spectra. Dielectric properties such as dielectric constant (ε′) and dielectric loss (ε″) have been investigated in the frequency range 100 Hz–1 MHz. The dielectric constant (ε′) dispersion for CFGO nanoferrites is fitted in accordance with the modified Debye’s function. The complex impedances and complex modulus analysis confirm a grain interior mechanism contributing to the dielectric properties. The electrical behaviour of the CFGO nanoferrites exhibited small polaron conduction mechanism. From the temperature dependence curve of dielectric relaxation, activation energies for CFGO samples have been calculated. The low loss dielectric makes these samples promising materials to be used at high frequencies.
Similar content being viewed by others
References
M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2 − xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)
A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties. Mater. Sci. Semicond. Process. 27, 468–473 (2014)
A. Samavati, A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)
T.E. Quickel, V.H. Le, T. Brezesinski, S.H. Tolbert, On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano Lett. 10(8), 2982–2988 (2010)
X. Liu, Synthesis, Fabrication and Characterization of Magnetic and Dielectric Nanoparticles and Nanocomposite Films (City University of New York, 2014)
R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd 684, 569–581 (2016)
R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)
C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.H. Park, J. Park, J.Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113(17), 7085–7090 (2009)
V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)
J.W. Martens, Magneto-optical properties of substituted cobalt ferrites: CoFe2 − xMexO4 (Me = Rh3+, Mn3+, Ti4++ Co2+). J. Appl. Phys. 59(11), 3820–3823 (1986)
M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)
H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta biomater. 7(9), 3496–3504 (2011)
M. Maddahfar, M. Ramezani, S.M. Hosseinpour-Mashkani, Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. Appl. Phys. A 122(8), 752 (2016)
M. Kooti, S. Saiahi, H. Motamedi, Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater. 333, 138–143 (2013)
A.R. Reddy, G.R. Mohan, D. Ravinder, B.S. Boyanov, High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34(13), 3169–3176 (1999)
O.F. Caltun, G.S. Rao, K.H. Rao, B.P. Rao, C. Kim, C.O. Kim, I. Dumitru, N. Lupu, H. Chiriac, High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5(1), 45–47 (2007)
S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)
L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60(1), 1–6 (2006)
R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110(5), 053910 (2011)
J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323(1), 133–137 (2011)
X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. 250, 16474 (2014)
C. Yang, J. Jiang, X. Liu, C. Yin, C. Deng, Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties. J. Magn. Magn. Mater. 404, 45–52 (2016)
R. Manjula, V.R. Murthy, J. Sobhanadri, Electrical conductivity and thermoelectric power measurements of some lithium–titanium ferrites. J. Appl. Phys. 59(8), 2929–2932 (1986)
K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)
K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122(22), 224104 (2017)
A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)
S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50(8), 1–4 (2014)
B.R. Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J. Asian Ceram. Soc. 5(2), 94–103 (2017)
V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, Structural and electrical studies of nano structured Sn1 − xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 21(4), 343–348 (2010)
R.R. Prabhu, M.A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31(3), 511–515 (2008)
M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd 481(1–2), 515–519 (2009)
S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)
S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9 − xErxO4). J. Phys. Chem. C 120(10), 5682–5693 (2016)
G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9(2), 165–175 (1959)
K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)
J.C. Anderson, Dielectrics (Spottiswoode, Ballantyne and Co Ltd., London, 1964)
K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115(2), 554–560 (2010)
N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)
E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)
C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121 (1951)
S.S. Jadhav, S.E. Shirsath, B.G. Toksha, D.R. Shengule, K.M. Jadhav, Structural and dielectric properties of Ni–Zn ferrite nanoparticles prepared by co-precipitation method. J. Optoelectron. Adv. Mater. 10(10), 2644–2648 (2008)
J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)
K.W. Wagner, Zurtheorie der unvollkommenen dielektrika. Ann. Phys. 40, 817–855 (1913)
N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi (a) 23(2), 575–582 (1974)
N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J. Phys. Condens. Matter 19(38), 386201 (2007)
K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn. J. Appl. Phys. 10(11), 1520 (1971)
C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)
E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439(1), 012015 (2013)
S. Chakrabarty, A. Dutta, M. Pal, Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim. Acta 184, 70–79 (2015)
R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88(3), 1356–1365 (2000)
U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram. Int. 39(5), 5227–5234 (2013)
S.R. Mohapatra, S.D. Kaushik, A. Singh, Enhanced antiferromagnetic transition and magnetodielectric study in Cobalt and Holmium co-substituted multiferroic Bi2Fe4O9. Mater. Res. Lett. (2018). https://doi.org/10.1088/2053-1591/aaa655
Acknowledgements
Ms. Krutika Routray acknowledges Department of Science and Technology, India, for Fellowship Grants under INSPIRE Scheme with Sanction Number DST/INSPIRE Fellowship/2014/IF140812 during her research work. Magnetisation study has been supported by VSM, DST, India, Project Code “EMR/2014/000341”.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Routray, K.L., Behera, D. Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4. J Mater Sci: Mater Electron 29, 14248–14260 (2018). https://doi.org/10.1007/s10854-018-9558-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-018-9558-2