Skip to main content
Log in

Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt ferrites nanoparticles doped with gadolinium CoFe2−xGdxO4, referred to as CFGO (x = 0.0, 0.1, 0.3, 0.5 and 0.7) was achieved by glycine nitrate process. The phase confirmation and crystallite size were obtained from X-ray diffraction spectra and their variation with dopants content was determined. The Williamson–Hall plot was used to investigate the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CFGO nanoparticles. Further confirmation of the spinel structure was done by Fourier transform infrared spectra. Dielectric properties such as dielectric constant (ε′) and dielectric loss (ε″) have been investigated in the frequency range 100 Hz–1 MHz. The dielectric constant (ε′) dispersion for CFGO nanoferrites is fitted in accordance with the modified Debye’s function. The complex impedances and complex modulus analysis confirm a grain interior mechanism contributing to the dielectric properties. The electrical behaviour of the CFGO nanoferrites exhibited small polaron conduction mechanism. From the temperature dependence curve of dielectric relaxation, activation energies for CFGO samples have been calculated. The low loss dielectric makes these samples promising materials to be used at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2 − xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26(12), 9776–9781 (2015)

    Article  Google Scholar 

  2. A. Javidan, S. Rafizadeh, S.M. Hosseinpour-Mashkani, Strontium ferrite nanoparticle study: thermal decomposition synthesis, characterization, and optical and magnetic properties. Mater. Sci. Semicond. Process. 27, 468–473 (2014)

    Article  Google Scholar 

  3. A. Samavati, A.F. Ismail, Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology 30, 158–163 (2017)

    Article  Google Scholar 

  4. T.E. Quickel, V.H. Le, T. Brezesinski, S.H. Tolbert, On the correlation between nanoscale structure and magnetic properties in ordered mesoporous cobalt ferrite (CoFe2O4) thin films. Nano Lett. 10(8), 2982–2988 (2010)

    Article  Google Scholar 

  5. X. Liu, Synthesis, Fabrication and Characterization of Magnetic and Dielectric Nanoparticles and Nanocomposite Films (City University of New York, 2014)

  6. R. Sharma, P. Thakur, M. Kumar, N. Thakur, N.S. Negi, P. Sharma, V. Sharma, Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J. Alloys Compd 684, 569–581 (2016)

    Article  Google Scholar 

  7. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J. Appl. Phys. 112(8), 084321 (2012)

    Article  Google Scholar 

  8. C.H. Kim, Y. Myung, Y.J. Cho, H.S. Kim, S.H. Park, J. Park, J.Y. Kim, B. Kim, Electronic structure of vertically aligned Mn-doped CoFe2O4 nanowires and their application as humidity sensors and photodetectors. J. Phys. Chem. C 113(17), 7085–7090 (2009)

    Article  Google Scholar 

  9. V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater. 163(1–2), 243–248 (1996)

    Article  Google Scholar 

  10. J.W. Martens, Magneto-optical properties of substituted cobalt ferrites: CoFe2 − xMexO4 (Me = Rh3+, Mn3+, Ti4++ Co2+). J. Appl. Phys. 59(11), 3820–3823 (1986)

    Article  Google Scholar 

  11. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)

    Article  Google Scholar 

  12. H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta biomater. 7(9), 3496–3504 (2011)

    Article  Google Scholar 

  13. M. Maddahfar, M. Ramezani, S.M. Hosseinpour-Mashkani, Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. Appl. Phys. A 122(8), 752 (2016)

    Article  Google Scholar 

  14. M. Kooti, S. Saiahi, H. Motamedi, Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater. 333, 138–143 (2013)

    Article  Google Scholar 

  15. A.R. Reddy, G.R. Mohan, D. Ravinder, B.S. Boyanov, High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mater. Sci. 34(13), 3169–3176 (1999)

    Article  Google Scholar 

  16. O.F. Caltun, G.S. Rao, K.H. Rao, B.P. Rao, C. Kim, C.O. Kim, I. Dumitru, N. Lupu, H. Chiriac, High magnetostrictive cobalt ferrite for sensor applications. Sens. Lett. 5(1), 45–47 (2007)

    Article  Google Scholar 

  17. S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22(6), 2740–2750 (2012)

    Article  Google Scholar 

  18. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater. Lett. 60(1), 1–6 (2006)

    Article  Google Scholar 

  19. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110(5), 053910 (2011)

    Article  Google Scholar 

  20. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323(1), 133–137 (2011)

    Article  Google Scholar 

  21. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, J.P. Liu, Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chem. Eng. 250, 16474 (2014)

    Google Scholar 

  22. C. Yang, J. Jiang, X. Liu, C. Yin, C. Deng, Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: preparation and microwave-absorbing properties. J. Magn. Magn. Mater. 404, 45–52 (2016)

    Article  Google Scholar 

  23. R. Manjula, V.R. Murthy, J. Sobhanadri, Electrical conductivity and thermoelectric power measurements of some lithium–titanium ferrites. J. Appl. Phys. 59(8), 2929–2932 (1986)

    Article  Google Scholar 

  24. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, Effect of cation distribution on structural and magnetic properties of Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 327, 159–166 (2013)

    Article  Google Scholar 

  25. K.L. Routray, D. Sanyal, D. Behera, Dielectric, magnetic, ferroelectric, and Mossbauer properties of bismuth substituted nanosized cobalt ferrites through glycine nitrate synthesis method. J. Appl. Phys. 122(22), 224104 (2017)

    Article  Google Scholar 

  26. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)

    Article  Google Scholar 

  27. S. Anjum, A. Rashid, F. Bashir, S. Riaz, M. Pervaiz, R. Zia, Effect of Cu-doped nickel ferrites on structural, magnetic, and dielectric properties. IEEE Trans. Magn. 50(8), 1–4 (2014)

    Article  Google Scholar 

  28. B.R. Kumar, B. Hymavathi, X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J. Asian Ceram. Soc. 5(2), 94–103 (2017)

    Article  Google Scholar 

  29. V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, Structural and electrical studies of nano structured Sn1 − xSbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at%) prepared by co-precipitation method. J. Mater. Sci. Mater. Electron. 21(4), 343–348 (2010)

    Article  Google Scholar 

  30. R.R. Prabhu, M.A. Khadar, Study of optical phonon modes of CdS nanoparticles using Raman spectroscopy. Bull. Mater. Sci. 31(3), 511–515 (2008)

    Article  Google Scholar 

  31. M. Srivastava, A.K. Ojha, S. Chaubey, A. Materny, Synthesis and optical characterization of nanocrystalline NiFe2O4 structures. J. Alloys Compd 481(1–2), 515–519 (2009)

    Article  Google Scholar 

  32. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  Google Scholar 

  33. S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9 − xErxO4). J. Phys. Chem. C 120(10), 5682–5693 (2016)

    Article  Google Scholar 

  34. G.H. Jonker, Analysis of the semiconducting properties of cobalt ferrite. J. Phys. Chem. Solids 9(2), 165–175 (1959)

    Article  Google Scholar 

  35. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9(4), 341–351 (1941)

    Article  Google Scholar 

  36. J.C. Anderson, Dielectrics (Spottiswoode, Ballantyne and Co Ltd., London, 1964)

  37. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115(2), 554–560 (2010)

    Article  Google Scholar 

  38. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5(9), 097166 (2015)

    Article  Google Scholar 

  39. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournès, C. D’Orléan, J.L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16(26), 5689–5696 (2004)

    Article  Google Scholar 

  40. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83(1), 121 (1951)

    Article  Google Scholar 

  41. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, D.R. Shengule, K.M. Jadhav, Structural and dielectric properties of Ni–Zn ferrite nanoparticles prepared by co-precipitation method. J. Optoelectron. Adv. Mater. 10(10), 2644–2648 (2008)

    Google Scholar 

  42. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)

    Google Scholar 

  43. K.W. Wagner, Zurtheorie der unvollkommenen dielektrika. Ann. Phys. 40, 817–855 (1913)

    Article  Google Scholar 

  44. N. Rezlescu, E. Rezlescu, Dielectric properties of copper containing ferrites. Phys. Status Solidi (a) 23(2), 575–582 (1974)

    Article  Google Scholar 

  45. N. Sivakumar, A. Narayanasamy, C.N. Chinnasamy, B. Jeyadevan, Influence of thermal annealing on the dielectric properties and electrical relaxation behaviour in nanostructured CoFe2O4 ferrite. J. Phys. Condens. Matter 19(38), 386201 (2007)

    Article  Google Scholar 

  46. K. Iwauchi, Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn. J. Appl. Phys. 10(11), 1520 (1971)

    Article  Google Scholar 

  47. C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015)

    Article  Google Scholar 

  48. E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439(1), 012015 (2013)

    Article  Google Scholar 

  49. S. Chakrabarty, A. Dutta, M. Pal, Effect of Mn and Ni codoping on ion dynamics of nanocrystalline cobalt ferrite: a structure property correlation study. Electrochim. Acta 184, 70–79 (2015)

    Article  Google Scholar 

  50. R. Bergman, General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88(3), 1356–1365 (2000)

    Article  Google Scholar 

  51. U.B. Shinde, S.E. Shirsath, S.M. Patange, S.P. Jadhav, K.M. Jadhav, V.L. Patil, Preparation and characterization of Co2+ substituted Li–Dy ferrite ceramics. Ceram. Int. 39(5), 5227–5234 (2013)

    Article  Google Scholar 

  52. S.R. Mohapatra, S.D. Kaushik, A. Singh, Enhanced antiferromagnetic transition and magnetodielectric study in Cobalt and Holmium co-substituted multiferroic Bi2Fe4O9. Mater. Res. Lett. (2018). https://doi.org/10.1088/2053-1591/aaa655

    Google Scholar 

Download references

Acknowledgements

Ms. Krutika Routray acknowledges Department of Science and Technology, India, for Fellowship Grants under INSPIRE Scheme with Sanction Number DST/INSPIRE Fellowship/2014/IF140812 during her research work. Magnetisation study has been supported by VSM, DST, India, Project Code “EMR/2014/000341”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krutika L. Routray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Routray, K.L., Behera, D. Enhancement in conductivity and dielectric properties of rare-earth (Gd3+) substituted nano-sized CoFe2O4. J Mater Sci: Mater Electron 29, 14248–14260 (2018). https://doi.org/10.1007/s10854-018-9558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9558-2

Navigation