Skip to main content
Log in

Efficient photocatalytic removal of RhB using magnetic Fe3O4–SnO2 nanocomposites containing Sn2+ interstitial impurities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe3O4–SnO2 nanocomposites with SnO2 in the reduced form (without post-annealing) were prepared. X-ray diffraction, high resolution TEM microscopy, X-Ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy and magnetization measurements were used for sample characterizations. Additionally, nitrogen adsorption–desorption isotherms and surface area measurements (BET) were made for porosity and surface area determination. Depending on the amount of SnCl2 used in preparation, tetragonal tin oxide hydroxide Sn6O4(OH)4 or SnO secondary phases were also formed in various samples. XPS analysis shows the presence of surface Sn2+ states and as well as lack, or non-detectable, interstitial tin inside SnO2 nanocrystallites. The presence of Sn2+ surface states determines important changes of both magnetic and photocatalytic properties of samples. Thus Sn2+ surface states determine, on the one hand, an increased efficiency of photocatalytic processes and, on the other hand, a significant decrease of the saturation magnetization of Fe3O4 cores. Moreover, by using ESR spin trapping technique, the generation of reactive oxygen species (·OH, O2·−) resulted by light irradiation of samples was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Miar Alipour, D. Friedmann, J. Scott, R. Amal, TiO2/porous adsorbents: recent advances and novel applications. J. Hazard. Mater. 341, 404–423 (2009)

    Article  Google Scholar 

  2. D.P. Zhao, X. Wu, Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Mater. Lett. 210, 354–357 (2018)

    Article  Google Scholar 

  3. J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7, 425–443 (2011)

    Article  Google Scholar 

  4. Z.J. Li, Z.W. Huang, W.L. Guo, L. Wang, L.R. Zheng, Z.F. Chai, W.Q. Shi, Enhanced photocatalytic removal of uranium (VI) from aqueous solution by magnetic TiO2/Fe3O4 and its graphene composite. Environ. Sci. Technol. 51(10), 5666–5674 (2017)

    Article  Google Scholar 

  5. K. Sornalingam, A. McDonagh, J.L. Zhou, M.A.H. Johir, M.B. Ahmed, Photocatalysis of estrone in water and wastewater: comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products. Sci. Total Environ. 610, 521–530 (2018)

    Article  Google Scholar 

  6. P. Margan, M. Haghighi, Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nanophotocatalyst for removal of acid orange from wastewater. Ultrason. Sonochem. 40, 323–332 (2018)

    Article  Google Scholar 

  7. S.T. Huang, J.F. Chen, J.B. Zhong, J.Z. Li, W. Hu, M.J. Li, K. Huang, R. Duan, Enhanced photocatalytic performance of Ag/AgCl/SnO2 originating from efficient formation of center dot O-2(-). Mater. Chem. Phys. 201, 35–41 (2017)

    Article  Google Scholar 

  8. M. Pirhashemi, A. Habibi-Yangjeh, S. Rahim, Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. J. Ind. Eng. Chem. 62, 1–25 (2018)

    Article  Google Scholar 

  9. A. Nouri, J. Sargolzaei, Removal of phenol dyes using a photocatalytic reactor with SnO2/Fe3O4 nanoparticles. J. Dispers. Sci. Technol. 35, 1031–1039 (2014)

    Article  Google Scholar 

  10. C. Karunakaran, C.S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Fe3O4/SnO2 nanocomposite: hydrothermal and sonochemical synthesis, characterization and visible-light photocatalytic and bactericidal activities. Powder Technol. 246, 635–642 (2013)

    Article  Google Scholar 

  11. V. Paramarta, A. Taufik, R. Saleh, The role of annealing temperature in photocatalytic performance of Fe3O4/SnO2 nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 196(1–5), 012032 (2017)

    Article  Google Scholar 

  12. Y.K. Wang, H.Y. Zhang, R.Z. Hu, J.W. Liu, T. van Ree, H.H. Wang, L.C. Yang, M. Zhu, Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 693, 1174–1179 (2017)

    Article  Google Scholar 

  13. H.X. Chai, C.S. Shi, E.Z. Liu, J.J. Li, N.Q. Zhao, C.N. He, Hierarchically structured carbon-coated SnO2-Fe3O4 microparticles with enhanced lithium storage performance. Appl. Surf. Sci. 361, 1–10 (2016)

    Article  Google Scholar 

  14. Y.P. Wang, Z. Peng, W. Jiang, Controlled synthesis of Fe3O4@SnO2/RGO nanocomposite for microwave absorption enhancement. Ceram. Int. 42, 10682–10689 (2016)

    Article  Google Scholar 

  15. L.R. Hong, J. Zhao, Y.M. Lei, R. Yuan, Y. Zhuo, Efficient electrochemiluminescence from Ru(bpy)3 2+ enhanced by three-layer porous Fe3O4@SnO2@Au nanoparticles for label-free and sensitive bioanalysis. Electrochim. Acta 241, 292–298 (2017)

    Article  Google Scholar 

  16. H. Liang, Z. Jia, H. Zhang, X. Wang, J. Wang, Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl. Surf. Sci. 422, 1–10 (2017)

    Article  Google Scholar 

  17. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Decoration of carbon dots and AgCl over g-C3N4 nanosheets: novel photocatalysts with substantially improved activity under visible light. Sep. Purif. Technol. 199, 64–77 (2018)

    Article  Google Scholar 

  18. A. Akhundi, A. Habibi-Yangjeh, Graphitic carbon nitride nanosheets decorated with CuCr2O4 nanoparticles: novel photocatalysts with high performances in visible light degradation of water pollutants. J. Colloid Interface Sci. 504, 697–710 (2017)

    Article  Google Scholar 

  19. M. Pirhashemi, A. Habibi-Yangjeh, Visible-light photosensitization of ZnO by Bi2MoO6 and AgBr: role of tandem n-n heterojunctions in efficient charge transfer and photocatalytic performances. Mater. Chem. Phys. 214, 107–119 (2018)

    Article  Google Scholar 

  20. S. Al-Meer, Z.K. Ghouri, K. Elsaid, A. Easa, M.T. Al-Qahtani, M.S. Akhtar, Engineering of magnetically separable ZnFe2O4@ TiO2 nanofibers for dye-sensitized solar cells and removal of pollutant from water. J. Alloys Compd. 723, 477–483 (2017)

    Article  Google Scholar 

  21. R. Zhang, H. Wu, D.D. Lin, W. Pan, Preparation of necklace-structured TiO2/SnO2 hybrid nanofibers and their photocatalytic activity. J. Am. Ceram. Soc. 92, 2463–2466 (2012)

    Article  Google Scholar 

  22. P.M.R. Boppella, S.V. Manorama, A. Facile, Green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Interfaces 4, 6252–6260 (2012)

    Article  Google Scholar 

  23. R.M. Mohamed, H.A. Gazzaz, Environmental remediation from aqueous mercury (II) by photocatalytic reduction using a coupled SnO2-Co3O4 nanocomposite. Desalin. Water Treat. 53, 2712–2719 (2015)

    Article  Google Scholar 

  24. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. J. Alloys Compd. 653, 327–333 (2015)

    Article  Google Scholar 

  25. A. Mehdinia, M. Jebeliyan, T.B. Kayyal, A. Jabbari, Rattle-type Fe3O4@SnO2 core-shell nanoparticles for dispersive solid-phase extraction of mercury ions. Microchim. Acta 184, 707–713 (2017)

    Article  Google Scholar 

  26. M. Mashkani, A. Mehdinia, A. Jabbari, Y. Bide, M.R. Nabid, Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chem. 239, 1019–1026 (2018)

    Article  Google Scholar 

  27. J.B. Xi, J. Zhang, H.Y. Zhao, Novel uniform Fe3O4 hollow spheres for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons. Anal. Sci. 33, 999–1005 (2017)

    Article  Google Scholar 

  28. M. Mousavi, A. Habibi-Yangjeh, S. Rahim, Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.: Mater. Electron. 29, 1719–1747 (2018)

    Google Scholar 

  29. H. Wang, S. Kalytchuk, H. Yang, L. He, C. Hu, W.Y. Teoh, A.L. Rogach, Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(II) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale 6, 6084–6091 (2014)

    Article  Google Scholar 

  30. Y.L. Wei, C.L. Chen, G.Z. Yuan, S. Gao, SnO2 nanocrystals with abundant oxygen vacancies: preparation and room temperature NO2 sensing. J. Alloys Compd. 681, 43–49 (2016)

    Article  Google Scholar 

  31. R.G. Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)

    Article  Google Scholar 

  32. M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv. Powder Technol. 29, 94–105 (2018)

    Article  Google Scholar 

  33. W. Wu, S. Zhang, F. Ren, X. Xiao, J. Zhou, C. Jian, Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core–shell heterostructures: formation mechanism and enhanced photocatalytic activity. Nanoscale 3, 4676–4684 (2011)

    Article  Google Scholar 

  34. W.W. Wang, J.L. Yao, Hydrothermal synthesis of SnO2/Fe3O4 nanocomposites and their magnetic property. J. Phys. Chem. C 113, 3070–3075 (2009)

    Article  Google Scholar 

  35. N. Du, Y.F. Chen, C.X. Zhai, H. Zhang, D. Yang, Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core–shell nanorods with high reversible capacity in lithium-ion batteries. Nanoscale 5, 4744–4750 (2013)

    Article  Google Scholar 

  36. L.L. Xing, C.X. Cui, P. Deng, Y.X. Nie, Y.Y. Zhao, B. He, X.Y. Xue, Template-free assembly of α-Fe2O3–SnO2 core–shell nanorod arrays on titanium foil and their excellent lithium storage performance. RSC Adv. 3, 10379–10384 (2013)

    Article  Google Scholar 

  37. C. Leostean, O. Pana, M. Stefan, A. Popa, D. Toloman, M. Senila, S. Gutoiu, S. Macavei, New properties of Fe3O4@SnO2 core-shell nanoparticles following interface charge/spin transfer. Appl. Surf. Sci. 427, 192–201 (2018)

    Article  Google Scholar 

  38. M. Stefan, C. Leostean, O. Pana, M.L. Soran, R.C. Suciu, E. Gautron, O. Chauvet, Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core–shell nanoparticles. Appl. Surf. Sci. 288, 180–192 (2014)

    Article  Google Scholar 

  39. M. Stefan, O. Pana, C. Leostean, C. Bele, D. Silipas, M. Senila, E. Gautron, Synthesis and characterization of Fe3O4–TiO2 core-shell nanoparticles. J. Appl. Phys. 116(1–10), 114312 (2014)

    Article  Google Scholar 

  40. M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senila, O. Marincas, L. Barbu-Tudoran, Magnetic recoverable Fe3O4-TiO2: Eu composite nanoparticles with enhanced photocatalytic activity. Appl. Surf. Sci. 390, 248–259 (2016)

    Article  Google Scholar 

  41. C. Leostean, O. Pana, R. Turcu, M.L. Soran, S. Macavei, O. Chauvet, C. Payen, Comparative study of core–shell iron/iron oxide gold covered magnetic nanoparticles obtained in different conditions. J. Nanopart. Res. 13, 6181–6192 (2011)

    Article  Google Scholar 

  42. M. Aslam, M. Tariq Qamar, S. Ali, U. Ateeq, M.T. Rehman, I. Soomro, I.M.I. Ahmed, A. Ismail, Hameed, Evaluation of SnO2 for sunlight photocatalytic decontamination of water. J. Environ. Manag. 217, 805–814 (2018)

    Article  Google Scholar 

  43. P. Meyera, M. Gibilaroa, L. Massota, I. Pasquet, P. Tailhades, S. Bouvet, P. Chamelot, Comparative study on the chemical stability of Fe3O4 and NiFe2O4 in molten salts. Mater. Sci. Eng. B 228, 117–122 (2018)

    Article  Google Scholar 

  44. C. Kilic, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88(1–4), 095501 (2002)

    Article  Google Scholar 

  45. P.J. Cumpson, M.P. Seah, Elastic scattering corrections in AES and XPS II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments. Surf. Interface Anal. 25, 430–446 (1997)

    Article  Google Scholar 

  46. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physissorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  Google Scholar 

  47. M.A. Ahmed, M.F. Abdel Messih, S.F. El-Hafez, F.E.H. Aliaa, M.M. Khalifa, Synthesis of metallic silver nanoparticles decorated mesoporous SnO2 for removal of methylene blue dye by coupling adsorption and photocatalytic processes. J. Photochem. Photobiol. A 346, 77–88 (2017)

    Article  Google Scholar 

  48. A. Popa, M. Stefan, D. Toloman, O. Pana, A. Mesaros, C. Leostean, S. Macavei, O. Marincas, R. Suciu, L. Barbu-Tudoran, Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability. Powder Technol. 325, 441–451 (2018)

    Article  Google Scholar 

  49. K. Rachut, C. Körber, J. Brötz, A. Klein, Growth and surface properties of epitaxial SnO2. Phys. Stat. Sol. A 211, 1997–2004 (2014)

    Article  Google Scholar 

  50. M.M. Momeni, M. Hakimian, A. Kazempour, In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram. Int. 41, 13692–13701 (2015)

    Article  Google Scholar 

  51. T. Saison, N. Chemin, C. Chanéac, O. Durupthy, L. Mariey, F. Maugé, V. Brezová, J.P. Jolivet, New insights into BiVO4 properties as visible light photocatalyst. J. Phys. Chem. C 119, 12967–12977 (2015)

    Article  Google Scholar 

Download references

Funding

The authors would like to express appreciation for the financial support to the Romanian Ministry of Research and Innovation, Core Program Project PN18 03 02 03. The authors also wish to thank Dr. Lucian Barbu-Tudoran (ILEM-CETATEA) for electron microscopy analysis and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Popa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefan, M., Popa, A., Pana, O. et al. Efficient photocatalytic removal of RhB using magnetic Fe3O4–SnO2 nanocomposites containing Sn2+ interstitial impurities. J Mater Sci: Mater Electron 29, 14132–14143 (2018). https://doi.org/10.1007/s10854-018-9546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9546-6

Navigation