Skip to main content

Advertisement

Log in

The effects of solvent treated PEDOT:PSS buffer layer in organic solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various treatments on the PEDOT:PSS films were carried out to investigate it’s influence on the conductivity, morphology, transmittance and the corresponding impact of the performance of the organic photovoltaic devices based on the PCPDTBT:PCBM and P3HT:PCBM blends. These processing including doping PEDOT:PSS with DMF and ME solvents and exposing these films to the vapor of DMF and ME solvents, separately. A considerable enhancement of the conductivity and transmittance of PEDOT:PSS was observed after doping solvent into the PEDOT;PSS solution followed by solvent treatment through exposing these films to solvents environment. The best organic PV doped devices based on either PCPDTBT:PCBM or based on P3HT:PCBM with power conversion efficiency were 2.93% compared to 1.87% for the pristine PV devices or 2.79% compared to 1.77% for the pristine devices, respectively. The conductivity improvement was highly influenced by solvent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B. Kadem, W. Cranton, A. Hassan, Metal salt modified PEDOT: PSS as anode buffer layer and its effect on power conversion efficiency of organic solar cells. Org. Electron. 24, 73–79 (2015)

    Article  Google Scholar 

  2. J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, S.I. Na, Solution-processable reduced graphene oxide as a novel alternative to PEDOT: PSS hole transport layers for highly efficient and stable polymer solar cells. Adv. Mater. 23, 4923–4928 (2011)

    Article  Google Scholar 

  3. Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011)

    Article  Google Scholar 

  4. S. Zhang, Z. Fan, X. Wang, Z. Zhang, J. Ouyang, Enhancement of the thermoelectric properties of PEDOT: PSS via one-step treatment with cosolvents or their solutions of organic salts. J. Mater. Chem. 6, 7080–7087 (2018)

    Article  Google Scholar 

  5. Z. Wu, Z. Yu, H. Yu, X. Huang, M. Chen, Effect of trifluoroacetic acid treatment of PEDOT: PSS layers on the performance and stability of organic solar cells. J. Mater. Sci.: Mater. Electron. 29, 6607–6618 (2018)

    Google Scholar 

  6. G. Greczynski, T. Kugler, W.R. Salaneck, Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy. Thin Solid Films 354, 129–135 (1999)

    Article  Google Scholar 

  7. C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci (eds.), Organic Photovoltaics: Concepts and Realization (Springer, New York, 2013)

    Google Scholar 

  8. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000)

    Article  Google Scholar 

  9. F. Zhang, M. Johansson, M.R. Andersson, J.C. Hummelen, O. Inganäs, Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 14, 662–665 (2002)

    Article  Google Scholar 

  10. Y.S. Hsiao, W.T. Whang, C.P. Chen, Y.C. Chen, High-conductivity poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) film for use in ITO-free polymer solar cells. J. Mater. Chem. 18, 5948–5955 (2008)

    Article  Google Scholar 

  11. J.R. Kim, J.H. Jung, W.S. Shin, W.W. So, S.J. Moon, Efficient TCO-free organic solar cells with modified poly (3, 4-ethylenedioxythiophene):poly (styrenesulfonate) anodes. J. Nanosci. Nanotechnol. 11, 326–330 (2011)

    Article  Google Scholar 

  12. Y. Xia, J. Ouyang, PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 21, 4927–4936 (2011)

    Article  Google Scholar 

  13. W. Zhang, X. Bi, X. Zhao, Z. Zhao, J. Zhu, S. Dai, Y. Lu, S. Yang, Isopropanol-treated PEDOT: PSS as electron transport layer in polymer solar cells. Org. Electron. 15, 3445–3451 (2014)

    Article  Google Scholar 

  14. M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012)

    Article  Google Scholar 

  15. Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, K. Müllen, Transparent conductive electrodes from graphene/PEDOT: PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater. 27(4), 669–675 (2015)

    Article  Google Scholar 

  16. D.D. Fung, L. Qiao, W.C. Choy, C. Wang, E.I. Wei, F. Xie, S. He, Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT–PSS layer. J. Mater. Chem. 21(41), 16349–16356 (2011)

    Article  Google Scholar 

  17. S.K.M. Johnson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.W. Denier, W.R. van der Gon, M. Salaneck, Fahlman, The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrene sulfonic acid (PEDOT:PSS) films. Synth. Met. 139, 1–10 (2003)

    Article  Google Scholar 

  18. C.S. Suchand-Sangeeth, M. Jaiswal, R. Menon, Correlation of morphology and charge transport in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT:PSS) films. J. Phys. 21, 072101 (2009)

    Google Scholar 

  19. H.-C. Han, C.-A. Tseng, C.-Y. Du, A. Ganguly, C.-W. Chong, S.-B. Wang, C.-F. Lin, S.-H. Chang, C.-C. Su, J.-H. Lee, K.-H. Chen, L.-C. Chen, Enhancing efficiency with fluorinated interlayers in small molecule organic solar cells. J. Mater. Chem. 22, 22899 (2012)

    Article  Google Scholar 

  20. W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, Y. Cao, High-efficiency ITO-free polymer solar cells using highly conductive PEDOT: PSS/surfactant bilayer transparent anodes. Energy Environ. Sci. 6, 1956–1964 (2013)

    Article  Google Scholar 

  21. Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.T. Lee, B. Sun, High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy Environ. Sci. 8, 297–302 (2015)

    Article  Google Scholar 

  22. Z. Li, F. Qin, T. Liu, R. Ge, W. Meng, J. Tong, S. Xiong, Y. Zhou, Optical properties and conductivity of PEDOT: PSS films treated by polyethylenimine solution for organic solar cells. Org. Electron. 21, 144–148 (2015)

    Article  Google Scholar 

  23. A. Hassan, B. Kadem, W. Cranton, Organic solar cells: study of combined effects of active layer nanostructure and electron and hole transport layers. Thin Solid Films 636, 760–764 (2017)

    Article  Google Scholar 

  24. G.T. Yee, J.H. Wu, Y.M. Xiao, H.F. Yee, J. Lin, M.L. Huang, Flexible dye-sensitized solar cell based on PCBM/P3HT hetrojunction. Chin. Sci. Bull. 56, 325–330 (2011)

    Article  Google Scholar 

  25. C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, H.-K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 95, 3269–3275 (2011)

    Article  Google Scholar 

  26. V. Kumar, H. Wang, Plasmonic Au nanoparticles for enhanced broadband light absorption in inverted organic photovoltaic devices by plasma assisted physical vapour deposition. Org. Electron. 14, 560–568 (2013)

    Article  Google Scholar 

  27. I. Cruz-Cruz, M. Reyes-Reyes, M.A. Aguilar-Frutis, A.G. Rodriguez, R. López-Sandoval, Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT: PSS thin films. Synth. Met. 160, 1501–1506 (2010)

    Article  Google Scholar 

  28. X. Fan, G.J. Fang, P.L. Qin, F. Cheng, X.Z. Zhao, Rapid phase segregation of P3HT: PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells. Appl. Phys. A 105, 1003–1009 (2011)

    Article  Google Scholar 

  29. S. Garreau, J.L. Duvail, G. Louarn, Spectroelectrochemical studies of poly (3, 4-ethylenedioxythiophene) in aqueous medium. Synth. Met. 125, 325–329 (2001)

    Article  Google Scholar 

  30. Y.K. Han, M.Y. Chang, W.Y. Huang, H.Y. Pan, K.S. Ho, T.H. Hsieh, S.Y. Pan, Improved performance of polymer solar cells featuring one-dimensional PEDOT nanorods in a modified buffer layer. J. Electrochem. Soc. 158, K88–K93 (2011)

    Article  Google Scholar 

  31. A.A. Farah, S.A. Rutledge, A. Schaarschmidt, R. Lai, J.P. Freedman, A.S. Helmy, Conductivity enhancement of poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate)films post-spincasting. J. Appl. Phys. 112, 113709 (2011)

    Article  Google Scholar 

  32. N. Chaturvedi, F. Alam, S. Kumar Swami, V. Dutta, Effect of electric field on the spray deposited poly (3, 4-ethylenedioxythiophene):poly (styrenesulfonate) layer and its use in organic solar cell. J. Appl. Phys. 114, 184501 (2013)

    Article  Google Scholar 

  33. S.H. Chang, C.H. Chiang, F.S. Kao, C.L. Tien, C.G. Wu, Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photon. J. 6, 1–7 (2014)

    Article  Google Scholar 

  34. Y.-C. Chao, Y.-H. Lin, C.-Y. Lin, H.-D. Li, F.-M. Zhan, Y.-Z. Huang, Improved light trapping in polymer solar cells by light diffusion ink. J. Phys. D 47, 105102 (2014)

    Article  Google Scholar 

  35. B.Y. Kadem, R.G. Kadhim, H. Banimuslem, Efficient P3HT: SWCNTs hybrids as hole transport layer in P3HT: PCBM organic solar cells. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8974-7

    Google Scholar 

  36. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  Google Scholar 

  37. H. Li, Z.G. Zhang, Y. Li, J. Wang, Tunable open-circuit voltage in ternary organic solar cells. Appl. Phys. Lett. 101, 163302 (2012)

    Article  Google Scholar 

  38. H. Hwang, H. Lee, S. Shafian, W. Lee, J. Seok, K.Y. Ryu, K. Kim, Thermally stable bulk heterojunction prepared by sequential deposition of nanostructured polymer and fullerene. Polymers 9(9), 456 (2017)

    Article  Google Scholar 

  39. Y.C. Chao, Y.H. Lin, C.Y. Lin, F.M. Zhan, Y.Z. Huang, Improved light trapping in polymer solar cells by light diffusion ink. J. Phys. D 47, 105102 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledge the support from advances polymer lab, Physics Department, College of Science University of Babylon, University of Missan, and Sheffield Hallam University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Kadem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hashimi, M., Kadem, B., Rahaq, Y. et al. The effects of solvent treated PEDOT:PSS buffer layer in organic solar cells. J Mater Sci: Mater Electron 29, 13889–13896 (2018). https://doi.org/10.1007/s10854-018-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9521-2

Navigation