Skip to main content
Log in

The mechanism of Pd distribution in the process of FAB formation during Pd-coated Cu wire bonding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The palladium (Pd) distribution over the free air ball (FAB) and its effect on the ball’s shear strength were investigated in the Pd-coated copper (Cu) wire bonding process. It was found that for the same FAB/wire diameter ratio of 1.5, the bigger the electrical flame-off (EFO) current was, the larger would be the exposed Cu regions over FAB without Pd distribution. Combining experimental observations, a model of Pd distribution over FAB was first proposed by changing the EFO current and firing time. As the firing time increased, the coated Pd element could be dissolved into the Cu base to form a PdCu alloy at the FAB surface, to protect the bonded ball from corrosion. The Pd-coated Cu wire has higher bonding shear strength than the bare Cu wire. However, the FAB with the largest Pd coverage had the smallest ball shear strength, which revealed that the control of Pd distribution over FAB is very critical for a high-quality bonding interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Guo, L. Gao, D. Mao, Microelectron. Reliab. 54, 2550 (2014)

    Article  Google Scholar 

  2. Z.W. Zhong, Microelectron. Reliab. 51, 4 (2011)

    Article  Google Scholar 

  3. P. Chauhan, Z.W. Zhong, M. Pecht, J. Electron. Mater. 42, 2415 (2013)

    Article  Google Scholar 

  4. T. Uno, K. Kimura, T. Yamada, in Microelectronics and Packaging Conference, 2009

  5. T. Uno, Microelectron. Reliab. 51, 148 (2011)

    Article  Google Scholar 

  6. H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Acta Mater. 59, 5661 (2011)

    Article  Google Scholar 

  7. B.K. Appelt, A. Tseng, C.H. Chen, Microelectron. Reliab. 51, 13 (2011)

    Article  Google Scholar 

  8. C.S. Goh, W.L.E. Chong, T.K. Lee et al., Crystals 3, 391 (2013)

    Article  Google Scholar 

  9. S. Kaimori, T. Nonaka, A. Mizoguchi, IEEE Trans. Adv. Packag. 29, 227–231 (2006)

    Article  Google Scholar 

  10. G.S. Oehrlein, G.J. Scilla, S. Jeng, Appl. Phys. Lett. 52, 907 (1988)

    Article  Google Scholar 

  11. B. Zhang, K. Qian, T. Wang et al., Semicond. Tech. 35, 662 (2010)

    Google Scholar 

  12. E.M. Schindel-Bidinelli, Int. J. Adhes. Adhes. 16, 33 (1996)

    Article  Google Scholar 

  13. C.J. Vath, M. Gunasekaran, R. Malliah, in Electronics Packaging Technology Conference, EPTC’09, 11th, 2009, pp. 374–380

  14. L.J. Tang, H.M. Ho, Y.J. Zhang, Y.M. Lee, C.W. Lee, in Electronics Packaging Technology Conference (EPTC), 12th, 2010, pp. 777–782

  15. L.J. Tang, H.M. Ho, W. Koh, Y.J. Zhang, K.S. Goh, C.S. Huang, Y.T. Yu, in Electronic Components and Technology Conference (ECTC), IEEE 61st, 2011, pp. 1673–1678

  16. J. Li, X. Zhang, L. Liu et al., J. Microelectromech. Syst. 22, 560 (2013)

    Article  Google Scholar 

  17. H.C. Hsu, L.M. Chu, W.Y. Chang et al., J. Mater. Sci.-Mater. Electron. 24, 3594 (2013)

    Article  Google Scholar 

  18. W.H. Song, M. Mayer, Y. Zhou et al., Microelectron. Reliab. 52, 2744 (2012)

    Article  Google Scholar 

  19. P. Haonan, W. Jiaji, Y. Hongkun, Semicond. Tech. 38, 623 (2013)

    Google Scholar 

  20. W. Koh, T.K. Lee, H.S. Ng, K.S. Goh, H.M. Ho, in Electronic Packaging Technology and High-Density Packaging (ICEPT-HDP), 2011, pp. 188–194

  21. C.J. Hang, W.H. Song, I. Lum, M. Mayer, Y. Zhou, C.Q. Wang, J.T. Moon, J. Persic, Microelectron. Eng. 86, 2094 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0305700), the National Natural Science Foundation of China (Grant No. 51564025), and the Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (Grant No. SKL-SPM-201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Quan Liu or Ming Wen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Liu, ZQ., Ji, H. et al. The mechanism of Pd distribution in the process of FAB formation during Pd-coated Cu wire bonding. J Mater Sci: Mater Electron 29, 13774–13781 (2018). https://doi.org/10.1007/s10854-018-9508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9508-z

Navigation