Skip to main content
Log in

Electrical properties of ZnO/alumina nano composites for high voltage transmission line insulator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main aim of the present study is to evaluate the impact of the nano-ZnO on the dielectric properties of alumina bodies used in high voltage insulators. In this work, Zinc oxide/alumina nanocomposites were prepared by sol–gel method. The ratios of ZnO were 5, 6 and 7 mass %. The effect of ZnO on the densification, microstructure, mechanical and electrical properties of the prepared bodies were evaluated after sintering at a temperature ranging from 1550 to 1750 °C. Results revealed that incorporation of 7 mass % ZnO enhanced the breakdown voltage, electric resistivity and the dielectric loss, which are the most important factors to evaluate high-voltage insulators. In addition, incorporation of 7 mass % ZnO enhanced the densification and mechanical properties of the alumina nano composites .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.D. Rigterink, Ceramic electrical insulating materials. J. Am. Ceram. Soc. 41, 501–506 (1958)

    Article  Google Scholar 

  2. R.C. Buchanan, Processing, Properties, and Applications, Ceramic Materials for Electronics, 2nd edn. (Marcel Dekker, New York, 1986)

    Google Scholar 

  3. T.Y. Peng, P.W. Du, P. Hu, Z.C. Jiang, Preparation of nanoscale alumina powder by heterogeneous azeotropic distillation processing. J. Inorg. Mater. 15, 1097–1101 (2000)

    Google Scholar 

  4. S. Ramanathan, S.K. Roy, R. Bhat, D.D. Upadhaya, A.R. Biswas, Preparation and characterization of boehmite precursor and sinterable alumina powder from aqueous aluminium chloride-urea reaction. J. Alloys Compd. 243, 39–44 (1996)

    Article  Google Scholar 

  5. S. Kureti, W. Weisweiler, A novel sol–gel method for the synthesis of γ-aluminium oxide: development of the sol–gel transformation and characterization of the xerogel. J. Non-Cryst. Solids 303, 253–261 (2002)

    Article  Google Scholar 

  6. F. Mirjalili, M. Hasmaliza, L.C. Abdullah, Size-controlled synthesis of nano α-alumina particles through the sol–gel method Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 36, 1253–1257 (2010)

    Article  Google Scholar 

  7. S. Mishra, R. Ranjana, K. Balasubramanian, Development of nano-alumina based ceramic components for high heat flux insulation applications under dynamic load. J. Alloys Compd. 524, 83–86 (2012)

    Article  Google Scholar 

  8. T. Peng, X. Liu, K. Dai, J. Xiao, H. Song, Effect of acidity on the glycine–nitrate combustion synthesis of nanocrystalline alumina powder. Mater. Res. Bull. 41, 1638–1645 (2006)

    Article  Google Scholar 

  9. A.S. Mukasyan, P. Epstien, P. Dinka, Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31, 1789–1795 (2007)

    Article  Google Scholar 

  10. N.M. Alford, S.J. Penn, Sintered alumina with low dielectric loss. J. Appl. Phys. 80, 5895 (1996)

    Article  Google Scholar 

  11. S.J. Penn, N.M. Alford, A. Templeton, K. Schrapel, Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Amer. Ceram. Soc. 80, 1885–1888 (1997)

    Article  Google Scholar 

  12. R.L. Coble, Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32, 793 (1961)

    Article  Google Scholar 

  13. M.P. Harmer, R.J. Brook, The effect of MgO additions on the kinetics of hot pressing in Al2O3. J. Mater. Sci. 15, 3017 (1980)

    Article  Google Scholar 

  14. S.J. Bennison, M.P. Harmer, Grain growth kinetics for alumina in the absence of a liquid phase. J. Am. Ceram. Soc. 68, C22 (1985)

    Article  Google Scholar 

  15. A.A. Mostafa, MSh. Khalil, S.M. Naga, Sintering, microstructure and electrical properties of doped silica fume/alumina mixtures. InterCeram 53, 400–404 (2004)

    Google Scholar 

  16. J. Liebermann, High-strength alumina-based porcelain for large electric insulators and its manufacture. German Patent No. DE 4122023 (1991)

  17. A. Sukee, E. Kantarak, P. Singjai, Preparation of aluminium doped zinc oxide thin films on glass substrate by sparkling process and their optical and electrical properties., J. Phys.: Conf. Ser. 901 (2017)

  18. T.K. Gupta, Application of zinc-oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  Google Scholar 

  19. G.G. Vale, P. Hammer, S.H. Pulcinelli, C.V. Santilli, Transparent and conductive ZnO: Al thin films prepared by sol-gel dipcoating. J. Eur. Ceram. Soc. 24, 1009–1013 (2004)

    Article  Google Scholar 

  20. M. Matsuoka, T. Masuyama, Y. Iida, Voltage Nonlinearity of zinc oxide ceramics doped with alkali earth metal oxide. Jpn. J. Appl. Phys. 8, 1275 (1969)

    Article  Google Scholar 

  21. M. Inada, Microstructure of nonohmic zinc oxide ceramics. Jpn. J. Appl. Phys. 17, 673–678 (1978)

    Article  Google Scholar 

  22. D.K. B.Baruwati, S.V. Kumar, Manorama, Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sens. Actuators 119, 676–682 (2006)

    Article  Google Scholar 

  23. S. Kucheiko, H.J. Kim. S.J. Yoon, H.J. Jung, Effect of ZnO additive on the microstructure and microwave dielectric properties of CaTi1x(Fe0.5,Nb0.5)xO3 ceramics. Jpn. J. Appl. Phys. 36, 198–202 (1997)

    Article  Google Scholar 

  24. M.M. Lu, W.Q. Cao, H.L. Shi, X.Y. Fang, J. Yang, Z.L. Hou, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution—process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2, 10540–10546 (2014)

    Article  Google Scholar 

  25. M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. App. Phys. Lett. 91, 203110 (2007)

    Article  Google Scholar 

  26. E.H. Sallam, H. El-Didamony, D.A. Abdel Aziz, S.M. Naga, Influence of Zn+ 2 ion addition on properties of aluminous electrical porcelain. Br. Ceram. Trans. 100, 177–180 (2001)

    Article  Google Scholar 

  27. R.D. Bagley, I. Cutler, D.L. Johnson, Effect of TiO2 on initial sintering of Al2O3. J. Am. Ceram. Soc. 53, 136–141 (1970)

    Article  Google Scholar 

  28. W.C. Johnson, R.I. Coble, A test of the second-phase and impurity-segregation models for MgO enhanced densification of sintered alumina. J. Am. Ceram. Soc. 61, 110–114 (1978)

    Article  Google Scholar 

  29. S. Lartigue, L. Priester, F. Dupau, P. Gruffel, C. Carry, Dislocation activity and differences between tensile and compressive creep of yttria doped alumina. Mater. Sci. Eng. A 164, 211–215 (1993)

    Article  Google Scholar 

  30. H. Yoshida, Y. Ikuhara, T. Sakuma, Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Mater. 50, 2955–2966 (2002)

    Article  Google Scholar 

  31. K. Maca, V. Pouchlý, K. Bodišová, P. Švancárek, D. Galusek, Densification of fine-grained alumina ceramics doped by magnesia, yttria and zirconia evaluated by two different sintering models. J. Eur. Ceram. Soc. 12, 4363–4372 (2014)

    Article  Google Scholar 

  32. H. Yoshida, S. Hashimoto, T. Yamamoto, Dopant effect on grain boundary diffusivity in polycrystalline alumina. Acta Mater. 53, 433–440 (2005)

    Article  Google Scholar 

  33. H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai, E. Matsubara, X-ray absorption fine-structure study on the fine structure of lutetium segregated at grain boundaries in fine-grained polycrystalline alumina. Philos. Mag. 84, 865–876 (2004)

    Article  Google Scholar 

  34. Q. Dong, Z.H. Du, T.S. Zhang, J. Lu, X.C. Song, J. Ma, Sintering and ionic conductivity of 8YSZ and CGO10 electrolytes with small addition of Fe2O3: a comparative study. Int. J. Hydrog. Energy 34, 7903–7909 (2009)

    Article  Google Scholar 

  35. M.M.R. Boutz, A.J.A. Winnubst, F.H. Hartgers, A.J. Burggraaf, Effect of additives on densification and deformation of tetragonal zirconia. J. Mater. Sci. 29, 5374–5382 (1994)

    Article  Google Scholar 

  36. J.D. Powers, A.M. Glaeser, Grain boundary migration in ceramics. Interface Sci. 6(1–2), 23–39 (1998)

    Article  Google Scholar 

  37. A.M. Hassan, S.M. Naga, M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites. Int. J. Refract. Met. Hard Mater. 48, 338–345 (2015)

    Article  Google Scholar 

  38. W. Jo, D.Y. Kim, N.M. Hwang, Effect of interface structure on the microstructural evolution of ceramics. J. Am. Ceram. Soc. 89, 2369–2380 (2006)

    Article  Google Scholar 

  39. S.M. Naga, E.H. Sallam, D.A. Abdel Aziz, Microstructure and properties of aluminous electrical porcelain doped with Mg+2 and Ca+2 ions. InterCeram 50, 452–458 (2001)

    Google Scholar 

  40. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000)

    Article  Google Scholar 

  41. M.V. Chittan, C.M. Kumar, K. Sowjanya, B.R. Kumar, Estimation of lattice strain in nanometer-sized alumina doped ZnO ceramics by X-ray peak profile analysis. Mater. Today 4, 9237–9245 (2017)

    Article  Google Scholar 

  42. X. Li, X. Cao, L. Xu, L. Liu, Y. Wang, C. Meng, Z. Wang, High dielectric constant in Al-doped ZnO ceramics using high pressure treated powders. J. Alloys Compd. 657, 90–94 (2016)

    Article  Google Scholar 

  43. A. Ghosh, S.K. Das, J.R. Biswas, H.S. Tripathi, G. Banerjee, The effect of ZnO addition on the densification and properties of magnesium aluminate spinel. Ceram. Int. 26, 605–608 (2000)

    Article  Google Scholar 

  44. H. Salmang, Ceramics, Physical and Chemical Fundamentals (Butterworth, London, 1961)

    Google Scholar 

  45. L. Han, S. Yong, Study of large-scale aluminium-doped zinc oxide ceramic targets prepared by slip casting., Adv. Mater. Sci. Eng. 2016, 1–6 (2016)

    Google Scholar 

  46. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics (Wiley, New York, 1976)

    Google Scholar 

  47. N.A. Andreeva, S.S. Ordan’yan, The role of component dispersity and molding pressure in the manufacturing technology of electric porcelain. Refract. Ind. Ceram. 44, 277–280 (2003)

    Article  Google Scholar 

  48. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composite. Carbon 65, 124–139 (2013)

    Article  Google Scholar 

  49. W. Hu, Y. Liu, R.L. Witheres, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Electron-pinned defect-dipoles for high performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013)

    Article  Google Scholar 

  50. J. Liu, W.Q. Cao, H.B. Jin, J. Yuan, D.Q. Zhang, M.S. Cao, Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3, 4670–4677 (2015)

    Article  Google Scholar 

  51. V. Skákalová, A.B. Kaiser, Y.S. Woo, S. Roth, Electron transport in carbon nanotubes: from individual nanotubes to thin and thick network. Phys. Rev. B 74, 085403 (2006)

    Article  Google Scholar 

  52. B. Bourlon, C. Miko, L. Forró, D.C. Glattli, A. Bachtold, Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett. 93, 176806 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Naga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mehalawy, N., Awaad, M., Eliyan, T. et al. Electrical properties of ZnO/alumina nano composites for high voltage transmission line insulator. J Mater Sci: Mater Electron 29, 13526–13533 (2018). https://doi.org/10.1007/s10854-018-9480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9480-7

Navigation