Advertisement

Influence of charge carrier extraction parameters on the performance of bulk heterojunction organic solar cells

  • Douglas Yeboah
  • Jai Singh
Article
  • 78 Downloads

Abstract

An expression for the extraction coefficient (β) of free charge carriers in bulk heterojunction (BHJ) organic solar cells (OSCs) is derived as a function of the effective carrier mobility, effective carrier concentration, active layer thickness, dielectric constant and built-in voltage. Also a relation between the extraction coefficient β and fill factor (FF) is derived. The results show that FF increases when β increases, which occurs due to increase in extraction parameters like effective mobility and dielectric constant, and decrease in light intensity and the active layer thickness. These results agree well with the experimental observations. This study provides an alternative way of optimizing the material parameters crucial in the synthesis of new materials in order to achieve a high charge carrier extraction efficiency and hence a high PCE in BHJ OSCs.

References

  1. 1.
    C.C. Chen, W.H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, Y. Yang, Adv. Mater. 26, 5670 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, L. Ye, J. Hou, Adv. Energy Mater. 6, 1502529 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Gan, F.J. Bartoli, Z.H. Kafafi, Adv. Mater. 25, 2385 (2013)CrossRefGoogle Scholar
  4. 4.
    H.C. Liao, C.C. Ho, C.Y. Chang, M.H. Jao, S.B. Darling, W.-F. Su, Mater. Today 16, 326 (2013)CrossRefGoogle Scholar
  5. 5.
    M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Deibel, V. Dyakonov, Prog. Phys. 73, 096401 (2010)CrossRefGoogle Scholar
  7. 7.
    C. Vijila, S.P. Singh, E. Williams, P. Sonar, A. Pivrikas, B. Philippa, R. White, E.N. Kumar, S.G. Sandhya, S. Gorelik, J. Hobley, A. Furube, H. Matsuzaki, R. Katoh, J. Appl. Phys. 114, 184503 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Kirchartz, M. Agostinelli, J. Campoy-Quiles, Gong,, Nelson, J. Phys. Chem. Lett. 3, 3470 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Morvillo, E. Bobeico, S. Esposito, D. Rosita, Energy Procedia 3, 69 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Stolterfoht, A. Armin, B. Philippa, D. Neher, J. Phys. Chem. Lett. 7, 4716 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Stolterfoht, B. Philippa, S. Shoaee, H. Jin, W. Jiang, R.D. White, P.L. Burn, P. Meredith, A. Pivrikas, J. Phys. Chem. C 119, 26866 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Neher, J. Kniepert, A. Elimelech, L.J.A. Koster, Sci. Rep. 6, 24861 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Bartesaghi, I.d..C. Perez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L.J.A. Koster, Nat. Commun. 6, 7083 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Kaienburg, U. Rau, T. Kirchartz, Phys. Rev. Appl. 6, 024001 (2016)CrossRefGoogle Scholar
  15. 15.
    S.R. Cowan, A. Roy, A.J. Heeger, Phys. Rev. B 82, 245207 (2010)CrossRefGoogle Scholar
  16. 16.
    R.A. Street, A. Krakaris, S.R. Cowan, Adv. Funct. Mater. 22, 4608 (2012)CrossRefGoogle Scholar
  17. 17.
    M.A. Green, Sol. Cells 7, 337 (1982)CrossRefGoogle Scholar
  18. 18.
    D. Yeboah, J. Singh, Electronics 6, 75 (2017)CrossRefGoogle Scholar
  19. 19.
    C. Deibel, A. Wagenpfahl, V. Dyakonov, Phys. Status Solidi 2, 175 (2008)Google Scholar
  20. 20.
    M.M. Mandoc, L.J.A. Koster, P.W.M. Blom, Appl. Phys. Lett. 90, 133504 (2007)CrossRefGoogle Scholar
  21. 21.
    G. Namkoong, J. Kong, M. Samson, I.-W. Hwang, K. Lee, Org. Electron. 14, 74 (2013)CrossRefGoogle Scholar
  22. 22.
    J. Moulé, J.B. Bonekamp, K. Meerholza, J. Appl. Phys. 100, 094503 (2006)CrossRefGoogle Scholar
  23. 23.
    X. Liu, K.S. Jeong, B.P. Williams, K. Vakhshouri, C. Guo, K. Han, E.D. Gomez, Q. Wang, J.B. Asbury, J. Phys. Chem. B 117, 15866 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Cho, C.W. Schlenker, K.M. Knesting, P. Koelsch, H.-L. Yip, D.S. Ginger, A.K.-Y. Jen, Adv. Energy Mater. 4, 1301857 (2014)CrossRefGoogle Scholar
  25. 25.
    J.E. Donaghey, A. Armin, P.L. Burn, P. Meredith, Chem. Commun. 51, 14115 (2015)CrossRefGoogle Scholar
  26. 26.
    S.Y. Leblebici, T.L. Chen, P. Olalde-Velasco, W. Yang, B. Ma, ACS Appl. Mater. Interfaces 5, 10105 (2013)CrossRefGoogle Scholar
  27. 27.
    L.J.A. Koster, S.E. Shaheen, J.C. Hummelen, Adv. Energy Mater. 2, 1246 (2012)CrossRefGoogle Scholar
  28. 28.
    B. Ray, M.A. Alam, IEEE J. Photovolt. 3, 311 (2013)Google Scholar
  29. 29.
    V.A. Trukhanov, V.V. Bruevich, D.Y. Paraschuka, Sci. Rep. 5, 11478 (2015)CrossRefGoogle Scholar
  30. 30.
    G. Chen, H. Sasabe, Z. Wang, X. Wang, Z. Hong, J. Kido, Y. Yang, Phys. Chem. Chem. Phys. 14, 14661 (2012)CrossRefGoogle Scholar
  31. 31.
    P.C.R. Varma, M.A.G. Namboothiry, Phys. Chem. Chem. Phys. 18, 3438 (2016)CrossRefGoogle Scholar
  32. 32.
    D. Scheunemann, O. Kolloge, S. Wilken, M. Mack, J. Parisi, M. Schulz, A. Lützen, M. Schiek, Appl. Phys. Lett. 111, 183502 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Leblebici, J. Lee, A. Weber-Bargioni, B. Ma, J. Phys. Chem. C 121, 3279 (2017)CrossRefGoogle Scholar
  34. 34.
    K.S. Nalwa, J.A. Carr, R.C. Mahadevapuram,.H.K. Kodali, S. Bose, Y. Chen, J.W. Petrich, B. Ganapathysubramanian, S. Chaudhary, Energy Environ. Sci. 5, 7042 (2012)CrossRefGoogle Scholar
  35. 35.
    F. Jahani, S. Torabi, R.C. Chiechi, L.J.A. Koster, J.C. Hummelen, Chem. Commun. 50, 10645 (2014)CrossRefGoogle Scholar
  36. 36.
    M.L. Inche Ibrahim, Z. Ahmad, K. Sulaiman, S.V. Muniandy, AIP Adv. 4, 057133 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Engineering, Information Technology and EnvironmentCharles Darwin UniversityDarwinAustralia

Personalised recommendations