Preparation of three-dimensional vanadium nitride porous nanoribbon/graphene composite as an efficient electrode material for supercapacitors

  • Guiqiang Wang
  • Shuo Hou
  • Chao Yan
  • Xei Zhang
  • Weinan Dong
Article
  • 20 Downloads

Abstract

Three-dimensional vanadium nitride porous nanoribbons/graphene composite with hierarchical porosity was prepared and investigated as the electrode material for supercapacitors. Morphology characterization of vanadium nitride porous nanoribbons/graphene composite indicates that vanadium nitride porous nanoribbons incorporate with graphene nanosheets to from a stable three-dimensional architecture with hierarchical porosity. This unique three-dimensional architecture and the combining effect of vanadium nitride porous nanoribbons and graphene nanosheets network make vanadium nitride porous nanoribbons/graphene composite a high-performance electrode material for supercapacitors. At a current density of 0.3 A g−1, vanadium nitride porous nanoribbons/graphene electrode displays a specific capacitance of 164.4 F g−1, which is much higher than that of pure vanadium nitride electrode. In addition, vanadium nitride porous nanoribbons/graphene composite shows high capacitance retention rate (82% capacitance retention at the current density up to 10 A g−1) and good long-term cycling stability (97.5% capacitance retention over 2500 cycles).

Notes

Acknowledgements

This work is supported by Natural Science Foundation of Liaoning Province (Grant No. 201601011).

Supplementary material

10854_2018_9434_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1250 KB)

References

  1. 1.
    M. Beidaghi, Y. Gogotsi, Environ. Energy Sci. 7, 867 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Staaf, P. Lundgren, P. Enoksson, Nano Energy 9, 128 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Zhu, J. Zhou, Z. Li, W. Si, S. Zhuo, J. Mater. Chem. A 2, 12545 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, B. Tao, W. Xing, L. Zhang, Z. Yan, Nanoscale 8, 7889 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Xing, S. Hou, J. Zhang, J. Zhou, W. Si, S. Zhuo, Mater. Lett. 147, 97 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Jang, Nano Lett. 10, 4863 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Lu, S. Zhang, J. Yin, C. Bai, Y. Li, Y. Yang, L. Wei, Y. Ma, Y. Chen, Carbon 124, 64 (2017)CrossRefGoogle Scholar
  9. 9.
    W. Kang, B. Lin, G. Huang, C. Zhang, Y. Yao, B. Xing, J. Mater. Sci. Mater. Electron. 29, 3340 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Gao, W. Xing, J. Zhou, S. Zhuo, Z. Liu, Q. Xue, Z. Yan, Electrochim. Acta 133, 459 (2014)CrossRefGoogle Scholar
  11. 11.
    M.R. Sarpoushi, M.R. Borhani, M. Nasibi, B. Eghdami, H. Kazerooni, Mater. Sci. Semicond. Process. 31, 195 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Yan, B. Ling, W. Guo, H. Pang, H. Xue, J. Power Sources 329, 148 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Aghazadeh, R. Ahmadi, G. Gharailou, P. Norouzi, J. Mater. Sci. Mater. Electron. 27, 8623 (2016)CrossRefGoogle Scholar
  14. 14.
    G. Zhang, J. Fang, L. Sun, S. Li, K. Xu, Mater. Sci. Semicond. Process. 66, 140, (2017)CrossRefGoogle Scholar
  15. 15.
    A. Hossain, P. Bandyopadhyay, P. Sarathi, S. Roy, Appl. Mater. Today 9, 300 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Xu, L. Zhang, G. Xu, Z. Sun, C. Qi, L. Zgang, D. Jia, Appl. Surf. Sci. 434, 112 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Wu, K. Hui, K. Kim, J. Mater. Chem. A 4, 9113 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Lin, X. Yan, J. Liang, R. Wang, L. Kong, J. Power Sources 279, 358 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Shen, X. Zhang, R. Guo, J. Lang, J. Chen, X. Yan, J. Mater. Chem. A 4, 8180 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Yang, Y. Li, Z. Lin, Y. Ding, C. Wong, X. Cai, W. Mai, J. Mater Chem. A 2, 595 (2014)CrossRefGoogle Scholar
  21. 21.
    Q. Li, S. Zheng, Y. Xu, H. Xue, H. Pang, Chem. Eng. J. 333, 505 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Lu, T. Liu, T. Zhai, Adv. Energy Mater. 4, 13000994 (2014)Google Scholar
  23. 23.
    X. Zhou, C. Shang, L. Gu, ACS Appl. Mater. Interfaces 3, 3058 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Zhao, B. Liu, S. Xum, J. Yang, Y. Lu, J. Alloys Compd. 651, 785 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Fechler, G. Tiruye, R. Marcilla, M. Antonietti, RSC Adv. 4, 26981 (2014)CrossRefGoogle Scholar
  26. 26.
    D. Choi, G.E. Blomgren, P.N. Kumta, Adv. Mater. 18, 1178 (2006)CrossRefGoogle Scholar
  27. 27.
    X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, Y. Tong, Y. Li, Nano Lett. 13, 2628 (2013)CrossRefGoogle Scholar
  28. 28.
    C.M. Ghimbeu, E. Raymundo-Pinero, P. Fioux, C. Vix-Guterl, J. Mater. Chem. 21, 13268 (2011)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, C.M.B. Holt, E.J. Luber, B.C. Olsen, X. Cui, X. Tan, W.P. Kalisvaart, D. Mitlin, J. Phys. Chem. C 115, 24381 (2011)CrossRefGoogle Scholar
  30. 30.
    W. Hummer, R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  31. 31.
    J. Kysar, P.K. Sekhar, Appl. Nanosci. 6, 959 (2016)CrossRefGoogle Scholar
  32. 32.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Phys. Chem. Solid 112, 106 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Liu, X. Wang, Q. Peng, Y. Li, Adv. Mater. 17, 764 (2005)CrossRefGoogle Scholar
  34. 34.
    R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Adv. Funct. Mater. 25, 2270 (2015)CrossRefGoogle Scholar
  35. 35.
    X. Zhang, X. Chen, K. Zhang, S. Peng, H. Xu, S. Dong, P. Han, G. Cui, J. Mater. Chem. A 1, 3340 (2013)CrossRefGoogle Scholar
  36. 36.
    Y. Xu. J. Wang, L. Shen, H. Dou, X. Zhang, Electrochim. Acta 173, 680 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Guiqiang Wang
    • 1
  • Shuo Hou
    • 1
  • Chao Yan
    • 1
  • Xei Zhang
    • 1
  • Weinan Dong
    • 1
  1. 1.School of New EnergyBohai UniversityJinzhouChina

Personalised recommendations