Skip to main content
Log in

Improved dielectric properties of PVDF nanocomposites: a comparative study of noncovalent and covalent functionalization of MWCNTs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) based nanocomposites with γ-oxo-pyrenebutyric acid-noncovalent modified multiwalled carbon nanotubes (denoted as PACNTs) and stearic acid-covalent modified MWCNTs (SACNTs) as nanofillers, were fabricated using solution-blending method and their dielectric properties were carefully investigated. γ-Oxo-pyrenebutyric acid (PA) or stearic acid (SA) can improve the dispersion of MWCNTs in PVDF matrix because of strong physical π–π interaction and the surface of MWCNTs grafted with SA respectively. The values of percolation threshold for PVDF/PACNTs and PVDF/SACNTs were determined to be 5.7 and 6.3 vol%, respectively. Higher dielectric permittivity and lower loss tangent of PVDF/PACNTs originates from remarkable interfacial polarization because PA have more contact area with MWCNTs and can reduce leakage current compared with SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334–336 (2006)

    Article  Google Scholar 

  2. Z.M. Dang, M.S. Zheng, P.H. Hu, J.W. Zha, J. Adv. Phys. 4, 302–313 (2015)

    Article  Google Scholar 

  3. Y.L. Su, Y.Q. Gu, S.N. Feng, J. Mater. Sci. Mater. Electron. 29, 2416–2420 (2018)

    Article  Google Scholar 

  4. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)

    Article  Google Scholar 

  5. Z. Liu, X. Yang, J. Sun, F. Ma, Mater. Lett. 212, 283–286 (2018)

    Article  Google Scholar 

  6. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660–723 (2012)

    Article  Google Scholar 

  7. S. Iijima, Nature 354, 56–58 (1991)

    Article  Google Scholar 

  8. J.N. Coleman, U. Khan, Y.K. Gunko, Adv. Mater. 18, 689–706 (2006)

    Article  Google Scholar 

  9. C. Yang, Y.H. Lin, C.W. Nan, Carbon 47, 1096–1101 (2009)

    Article  Google Scholar 

  10. X.R. Ye, Y. Lin, C. Wang, C.M. Wai, Adv. Mater. 15, 316–319 (2003)

    Article  Google Scholar 

  11. J. Salvetat, A.J. Kulik, J. Bonard, G.A.D. Briggs, T. Stöckli, K. Méténier, Adv. Mater. 11, 161–165 (1999)

    Article  Google Scholar 

  12. J.W. Xu, C.P. Wong, Appl. Phys. Lett. 87, 082907 (2005)

    Article  Google Scholar 

  13. C. Zhang, H. Chen, X. Zhang, Q. Wang, Mater. Lett. 197, 111–114 (2017)

    Article  Google Scholar 

  14. B. Fiedeler, F.H. Gojny, Compos. Sci. Technol. 66, 3115–3125 (2006)

    Article  Google Scholar 

  15. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105–1136 (2006)

    Article  Google Scholar 

  16. X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue, Y. Zhu, Carbon 53, 145–152 (2013)

    Article  Google Scholar 

  17. X. He, F. Zhang, R. Wang, W. Liu, Carbon 45, 2559–2563 (2007)

    Article  Google Scholar 

  18. Q. Li, Q.Z. Xue, L.Z. Hao, X.L. Gao, Q.B. Zheng, Compos. Sci. Technol. 68, 2290–2296 (2008)

    Article  Google Scholar 

  19. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Adv. Mater. 19, 852–857 (2007)

    Article  Google Scholar 

  20. E.Y. Choi, C.R. Sang, C.K. Kim, Carbon 72, 160–168 (2014)

    Article  Google Scholar 

  21. X. Lou, R. Daussin, S. Cuenot, A. Duwez, C. Pagnoulle, C. Detrembleur, Chem. Mater. 16, 4005–4011 (2004)

    Article  Google Scholar 

  22. T.J. Simmons, J. Bult, D.P. Hashim, R.J. Linhardt, M. Ajayan, ACS Nano 3, 865–870 (2009)

    Article  Google Scholar 

  23. P.M. Botta, J. Mira, A. Fondado, J. Rivas, Mater. Lett. 61, 2990–2992 (2007)

    Article  Google Scholar 

  24. K. Ahmad, W. Pan, S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006)

    Article  Google Scholar 

  25. Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.C. Chung, H.G. Yoon, Carbon 43, 23–30 (2005)

    Article  Google Scholar 

  26. Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Appl. Phys. Lett. 89, 072902 (2006)

    Article  Google Scholar 

  27. M. Li, X.Y. Huang, C. Wu, H.P. Xu, P.K. Jiang, T. Tanakac, J. Mater. Chem. 22, 23477–23484 (2012)

    Article  Google Scholar 

  28. F. He, S.T. Lau, H.L. Chan, T. Fan, Adv. Mater. 21, 710–715 (2009)

    Article  Google Scholar 

  29. S. Wang, P.K. Ang, Z.Q. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, Nano Lett. 10, 92–98 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51603060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pei Xu or Yunsheng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Ruan, G., Cui, Z. et al. Improved dielectric properties of PVDF nanocomposites: a comparative study of noncovalent and covalent functionalization of MWCNTs. J Mater Sci: Mater Electron 29, 13112–13117 (2018). https://doi.org/10.1007/s10854-018-9433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9433-1

Navigation