Cu:Ni bimetallic nanoparticles: facile synthesis, characterization and its application in photodegradation of organic dyes

  • Seyed Ali Hashemizadeh
  • Mahmoud BiglariEmail author


In this paper, Cu:Ni bimetallic nanoparticles (NPs) were prepared via the simple hydrothermal method. The effect of reaction time, molar ratio of precursors and temperature on particle size and morphology were investigated. Prepared products were characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscope and vibrating sample magnetometers. The values of both saturation magnetization and coercivity strongly depend on the temperature and molar ratio of precursors as a condition of the synthesis process. The obtained NPs exhibit a magnetic feature with a suitable saturation magnetization. The synthesized catalyst was successfully applied as a magnetically recoverable heterogeneous catalyst in degradation of methyl orange and methylene blue. Results showed that designed catalyst can degrade methyl orange and methylene blue about 98 and 72% in 60 min, respectively.


Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest regarding this article.


  1. 1.
    G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. Prakash Dwivedi, Z.A. Alothman, G.T. Mola, Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. Sci. (2017). Google Scholar
  2. 2.
    W. Liu, K. Hiekel, R. Hübner, H. Sun, A. Ferancova, M. Sillanpää, Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: influences of bimetallic effect and silica support. Sens. Actuators B 255, 1325–1334 (2018)CrossRefGoogle Scholar
  3. 3.
    S.A. Mousavi, M. Hassanpour, M. Salavati-Niasari, H. Safardoust-Hojaghan, M. Hamadanian, Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties. J. Mater. Sci. Mater. Electron. 29, 1238–1245 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Oh, J. Lee, M. Lee, Fabrication of Ag–Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl. Surf. Sci. 434, 1293–1299 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Mallikarjuna, H. Kim, Synthesis and characterization of highly active Cu/Pd bimetallic nanostructures. Colloids Surf. A 535, 194–200 (2017)CrossRefGoogle Scholar
  6. 6.
    C. Zheng, C. Yang, X. Cheng, S. Xu, Z. Fan, G. Wang, S. Wang, X. Guan, X. Sun, Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe–Cu on ordered mesoporous silicon. Sep. Purif. Technol. 189, 357–365 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Sakamoto, J. Imai, Y. Shiraishi, S. Tanaka, S. Ichikawa, T. Hirai, Photocatalytic dehalogenation of aromatic halides on Ta2O5-supported Pt–Pd bimetallic alloy nanoparticles activated by visible light. ACS Catal. 7, 5194–5201 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Piyush, Z. Yun, M. Najia, K.T. Ujwal, D.W. Benjamin, K. Ryan, S. Karthik, Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity. Nanotechnology 29, 014002 (2018)CrossRefGoogle Scholar
  9. 9.
    H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod. 148, 31–36 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Hassanpour, H. Safardoust-Hojaghan, M. Salavati-Niasari, Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 229, 293–299 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Wen, Y. Long, W. Han, W. Wu, Y. Yang, J. Ma, Preparation of a novel bimetallic AuCu–P25–rGO ternary nanocomposite with enhanced photocatalytic degradation performance. Appl. Catal. A 549, 237–244 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Gołąbiewska, W. Lisowski, M. Jarek, G. Nowaczyk, M. Michalska, S. Jurga, A. Zaleska-Medynska, The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol–gel method. Mol. Catal. 442, 154–163 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Amanulla, S. Sannasi, A.K.M. Abubakker, S.K. Ramaraj, A magnetically recoverable bimetallic Au-FeNPs decorated on g-C3N4 for efficient photocatalytic degradation of organic contaminants. J. Mol. Liq. 249, 754–763 (2018)CrossRefGoogle Scholar
  14. 14.
    N.M. Mohamed, R. Bashiri, F.K. Chong, S. Sufian, S. Kakooei, Photoelectrochemical behavior of bimetallic Cu–Ni and monometallic Cu, Ni doped TiO2 for hydrogen production. Int. J. Hydrog. Energy 40, 14031–14038 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Mizukoshi, K. Sato, T.J. Konno, N. Masahashi, Dependence of photocatalytic activities upon the structures of Au/Pd bimetallic nanoparticles immobilized on TiO2 surface. Appl. Catal. B 94, 248–253 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Farsinezhad, H. Sharma, K. Shankar, Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 17, 29723–29733 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Liu, J. Mei, C. Zhang, J. Zhang, R. Shi, Synthesis and magnetic properties of shuriken-like nickel nanoparticles. J. Mater. Sci. Technol. (2017). Google Scholar
  18. 18.
    Y.-J. Han, S.-J. Park, Influence of nickel nanoparticles on hydrogen storage behaviors of MWCNTs. Appl. Surf. Sci. 415, 85–89 (2017)CrossRefGoogle Scholar
  19. 19.
    A.R. Hajipour, P. Abolfathi, Nickel embedded on triazole-modified magnetic nanoparticles: a novel and sustainable heterogeneous catalyst for Hiyama reaction in fluoride-free condition. Catal. Commun. 103, 92–95 (2018)CrossRefGoogle Scholar
  20. 20.
    G. Cárdenas-Triviño, C. Elgueta, L. Vergara, J. Ojeda, A. Valenzuela, C. Cruzat, Chitosan doped with nanoparticles of copper, nickel and cobalt. Int. J. Biol. Macromol. 104, 498–507 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Momeni, R. Ahmadi, A. Safavi, I. Nabipour, Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Talanta 175, 514–521 (2017)CrossRefGoogle Scholar
  22. 22.
    N.K. Ojha, G.V. Zyryanov, A. Majee, V.N. Charushin, O.N. Chupakhin, S. Santra, Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord. Chem. Rev. 353, 1–57 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Krishna, D.M. Fernandes, J. Ventura, C. Freire, E. Titus, Novel synthesis of highly catalytic active Cu@Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. Int. J. Hydrog. Energy 41, 11608–11615 (2016)CrossRefGoogle Scholar
  24. 24.
    P. Nath, D.K. Sahu, A. Mallik, Physicochemical and corrosion properties of sono-electrodeposited Cu–Ni thin films. Surf. Coat. Technol. 307, 772–780 (2016)CrossRefGoogle Scholar
  25. 25.
    J.-G. Lee, D.-Y. Kim, B. Kang, D. Kim, H. Song, J. Kim, W. Jung, D. Lee, S.S. Al-Deyab, S.C. James, S.S. Yoon, Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray. Acta Mater. 93, 156–163 (2015)CrossRefGoogle Scholar
  26. 26.
    N. Riaz, F.K. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela, Photodegradation of Orange II under visible light using Cu–Ni/TiO2: effect of calcination temperature. Chem. Eng. J. 185–186, 108–119 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Harifi, M. Montazer, A novel magnetic reusable nanocomposite with enhanced photocatalytic activities for dye degradation. Sep. Purif. Technol. 134, 210–219 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Eero, K. Marianna, L. Markku, R. Mikko, The preparation of reusable magnetic and photocatalytic composite nanofibers by electrospinning and atomic layer deposition. Nanotechnology 20, 035602 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencePayame Noor UniversityTehranIran
  2. 2.Department of ChemistryIslamic Azad UniversityTabrizIran

Personalised recommendations