Temperature stable microwave dielectric ceramics in Li2ZnTi3O8–based composite for LTCC applications

  • Haishen RenEmail author
  • Haiyi Peng
  • Tianyi Xie
  • Liang Hao
  • Mingzhao Dang
  • Xie Meng
  • Shaohu Jiang
  • Yi Zhang
  • Huixing LinEmail author
  • Lan Luo


A temperature stable low temperature co-fired ceramic (LTCC) was fabricated by the powder mixture of Li2ZnTi3O8 ceramic, TiO2 τf-tailoring dopant and B2O3–La2O3–MgO–TiO2 (BLMT) glass sintering aid, and the sintering behavior, activation energy, phase composition, microstructure and microwave dielectric properties of the composite were investigated in the composition range (wt%) of 5 BLMT–(95-x) Li2ZnTi3O8−X TiO2 (x = 0, 1, 2, 3, 4 and 5). The sintering behavior results showed that all composites could be well sintered at 910 °C for 2 h through liquid-phase sintering. The activation energy of Li2ZnTi3O8 ceramic was calculated to be 520.9 ± 40.46 kJ/mol, while 5BLMT–93Li2ZnTi3O8–2TiO2 (in wt%) composite was reduced to 330.98 ± 47.34 kJ/mol. The XRD results showed that Li2ZnTi3O8 and TiO2 phase stably existed in all sample and a new phase LaBO3 was crystallized from BLMT glass during sintering process. As x increases, the rutile TiO2 phase increased in composite, which could adjust the temperature coefficient of resonant frequency (τf) to near-zero owing to the opposite τf value to other phases. And simultaneously dielectric constant (εr) demonstrated gradually increase, whereas the quality factor (Q × f) decreased gradually. The composite with x = 2 had an optimal microwave dielectric properties with εr = 25.3, Q × f = 32,800 GHz, and τf = − 0.54 ppm/°C. The corresponding fitting equations of εr, Q × f and τf on the x value were obtained by the Origin software, indicating that the dielectric properties of the composite could be precisely controlled by varying the content of TiO2. In addition, the good chemical compatibility of this material with Ag electrode made it as a potential candidate for LTCC technology.


  1. 1.
    Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, New York, 2005)Google Scholar
  2. 2.
    M.T. Sebastian, H. Wang, H. Jantunen. Curr. Opin. Solid. State Mater. 20, 151–170 (2016)CrossRefGoogle Scholar
  3. 3.
    M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  4. 4.
    S. George, M.T. Sebastian., J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRefGoogle Scholar
  5. 5.
    P. Zhang, Y.G. Zhao, Ceram. Int. 42, 2882–2886 (2016)CrossRefGoogle Scholar
  6. 6.
    X.P. Lu, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Ceram. Int. 39, 9829–9833 (2013)CrossRefGoogle Scholar
  7. 7.
    X.P. Lu, Y. Zheng, Z.W. Dong, P. Cheng, R. Lin, Ceram. Int. 40, 7087–7092 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.X. Li, H. Li, B. Tang, Z.J. Qin, H.T. Chen, S.R. Zhang, J. Mater. Sci.: Mater. Electron. 26, 1181–1185 (2015)Google Scholar
  9. 9.
    C.H. Su, Y.D. Ho, C.L. Huang, J. Alloy. Compd. 607, 67–72 (2014)CrossRefGoogle Scholar
  10. 10.
    H.S. Ren, X.G. Yao, T.Y. Xie, M.Z. Dang, H.Y. Peng, S.H. Jiang, X.Y. Zhao, H.X. Lin, L. Luo, J. Mater. Sci.: Mater. Electron. 28, 18646–18655 (2017)Google Scholar
  11. 11.
    H.S. Ren, S.H. Jiang, M.Z. Dang, T.Y. Xie, H. Tang, H.Y. Peng, H.X. Lin, L. Luo, J. Alloy. Compd. 740, 1188–1196 (2018)CrossRefGoogle Scholar
  12. 12.
    H.S. Ren, T.Y. Xie, M.Z. Dang, S.H. Jiang, H.X. Lin, L. Luo, Ceram. Int. 43, 12863–12869 (2017)CrossRefGoogle Scholar
  13. 13.
    V.B. John, Introduction to Engineering Materials, 3rd edn. (Macmillan, Houndmills, 1992)CrossRefGoogle Scholar
  14. 14.
    V.K. Sing, J. Am. Ceram. Soc. 64, 133–136 (1981)Google Scholar
  15. 15.
    Y.M. Lai, C.Y. Hong, L.C. Jin, X.L. Tang, H.W. Zhang, X. Huang, J. Li, H. Su, Ceram. Int. 43, 16167–16173 (2017)CrossRefGoogle Scholar
  16. 16.
    C.L. Huang, W.R. Yang, P.C. Yu, J. Eur. Ceram. Soc. 34, 277–284 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Hao, G.J. Shu, F.C. Meng, H.X. Lin, Ceram. Int. Google Scholar
  18. 18.
    X.Y. Chen, S.X. Bai, M. Li, W.J. Zhang., J. Eur. Ceram. Soc. 33, 3001–3006 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.X. Li, J.S. Li, B. Tang, S.R. Zhang, H. Li, Z.J. Qin, H.T. Chen, H. Yang, H. Tu, J. Mater. Sci.: Mater. Electron. 25, 2780–2785 (2014)Google Scholar
  20. 20.
    G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Int. J. Appl. Ceram. Technol. 10, 492–501 (2013)CrossRefGoogle Scholar
  21. 21.
    M. He, H.W. Zhang, J. Mater. Sci.: Mater. Electron. 24, 3303–3308 (2013)Google Scholar
  22. 22.
    Y.X. Li, Z.J. Qin, B. Tang, S.R. Zhang, G. Chang, H. Li, H.T. Chen, H. Yang, J.S. Li, J. Electron. Mater. 44, 281–286 (2015)CrossRefGoogle Scholar
  23. 23.
    M.Z. Hou, G.H. Chen, Y. Bao, Y. Yang, C.L. Yuan, J. Mater. Sci.: Mater. Electron. 23, 1722–1727 (2012)Google Scholar
  24. 24.
    X.P. Lu, Y. Zheng, Z.W. Dong, Q. Huang, Mater. Lett. 131, 1–4 (2014)CrossRefGoogle Scholar
  25. 25.
    K. Zhang, L. Yuan, Y.P. Fu, C. Yuan, W. Li., J. Mater. Sci.: Mater. Electron. 26, 6526–6531 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.CAS Key Laboratory of Materials for Energy ConversionChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations