Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles

  • Hongfen JiEmail author
  • Changlong Cai
  • Shun Zhou
  • Weiguo Liu


Co-doped ZnO-nanoparticles were synthesized using the sol–gel method. The microstructure, morphology, and physical properties of the particles were studied using several analytical methods, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–vis absorption spectroscopy, photoluminescence spectrometry, and vibrating sample magnetometry. The structure of the Co-doped ZnO nanoparticles was identified as hexagonal wurtzite, which suggests that Co2+ can replace the Zn2+ sites in the ZnO crystal lattice without forming a secondary phase. For Co-doped samples, the optical energy bandgap decreased with an increase in the Co content. The absorption-band edges were 565, 610, and 653 nm, which correspond to the d–d transition of Co2+ ions in the tetrahedral field of ZnO. The PL spectra revealed a strong defect-emission, which indicates that defects may stabilize the ferromagnetic order. Room-temperature ferromagnetism was observed in Co-doped ZnO nanoparticles according to M–H measurements. Furthermore, the magnetization increased with increasing Co concentration. These findings suggest that Co-doped ZnO nanoparticles could promote the development of semiconductor devices with ferromagnetic properties above room temperature in magneto-optical and spintronic applications.



This work was supported by grants from the National Natural Science Foundation (No. 61601359), Key Science and Technology Program Funded by Shaanxi Province Science and Technology Bureau (Program No. 16JS038), the Principal’s Foundation (Program No. XAGDXJJ15003) and Dean’s Foundation (Program No. 13GDYJY03) from Xi’an Technological University.


  1. 1.
    C. Liu. F. Yun, H. Morkoc, J. Mater. Sci. 16, 555–597 (2005)Google Scholar
  2. 2.
    M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378–8381 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39, L555 (2000)CrossRefGoogle Scholar
  4. 4.
    A.F. Jalbout, H. Chen, S.L. Whittenburg, Appl. Phys. Lett. 81, 2217–2219 (2002)CrossRefGoogle Scholar
  5. 5.
    B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Lany, A. Zunger, Phys. Rev. Lett. 98, 045501 (2007)CrossRefGoogle Scholar
  7. 7.
    L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, Solid State Commun. 145, 525–528 (2008)CrossRefGoogle Scholar
  8. 8.
    J.M. Wesselinowa, A.T. Apostolov, J. Appl. Phys. 107, 053917 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)CrossRefGoogle Scholar
  10. 10.
    G. Vijayaprasath, R. Murugan, G. Ravi, J. Chem. Tech. Res. 6, 3385–3387 (2014)Google Scholar
  11. 11.
    J. Jadhav, M. Patange, S. Biswas, Carbon 5, 269–274 (2013)Google Scholar
  12. 12.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 28, 16459–16466 (2017)Google Scholar
  13. 13.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, J. Mater. Sci. 28, 14965–14973 (2017)Google Scholar
  16. 16.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrason. Sonochem. 43, 120–135 (2018)CrossRefGoogle Scholar
  17. 17.
    S.J. Luo, C.B. Wang, X. Zhou, Q. Shen, L.M. Zhang, J. Mater. Sci. 23, 1477–1484 (2012)Google Scholar
  18. 18.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. 24, 96–105 (2013)Google Scholar
  19. 19.
    M.K. Lima, D.M. Fernandes, M.F. Silva, M.L. Baesso, A.M. Neto, G.R. de Morais, E.A.G. Pineda, J. Sol–Gel Sci. Technol. 72, 301–309 (2014)CrossRefGoogle Scholar
  20. 20.
    U. Manzoor, S. Siddique, R. Ahmed, Z. Noreen, H. Bokhari, I. Ahmad, PLoS ONE 11, e0154704 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Farhadi-Khouzani, Z. Fereshteh, M.R. Loghman-Estarki, R.S. Razavi, J. Sol–Gel Sci. Technol. 64, 193–199 (2012)CrossRefGoogle Scholar
  22. 22.
    S.F. Mousavi, F. Davar, M.R. Loghman-Estarki, J. Mater. Sci. 27, 12985–12995 (2016)Google Scholar
  23. 23.
    I. Djerdj, Z. Jagličić, D. Arčon, M. Niederberger, Nanoscale 2, 1096–1104 (2010)CrossRefGoogle Scholar
  24. 24.
    S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Mater. Sci. Eng. B 177, 428–435 (2012)CrossRefGoogle Scholar
  25. 25.
    N.F. Djaja, D.A. Montja, R. Saleh, Adv. Mater. Phys. Chem. 3, 33 (2013)CrossRefGoogle Scholar
  26. 26.
    G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. 26, 7205–7213 (2015)Google Scholar
  27. 27.
    S. Kumar, S. Basu, B. Rana, A. Barman, S. Chatterjee, S.N. Jha, D. Bhattacharyya, N.K. Sahoo, A.K. Ghosh, J. Mater. Chem. C 2, 481–495 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Gaudon, O. Toulemonde, A. Demourgues, Inorg. Chem. 46, 10996–11002 (2007)CrossRefGoogle Scholar
  29. 29.
    C.N.R. Rao, F.L. Deepak, J. Mater. Chem. 15, 573–578 (2005)CrossRefGoogle Scholar
  30. 30.
    X. Qiu, L. Li, G. Li, Appl. Phys. Lett. 88, 114103 (2006)CrossRefGoogle Scholar
  31. 31.
    X. Wang, R. Zheng, Z. Liu, H.P. Ho, J. Xu, S.P. Ringer, Nanotechnology 19, 455702 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.A. Alna’washi, F. Al-Dweri, F. El Akkad, J. Alloy. Compd. 655, 244–252 (2016)CrossRefGoogle Scholar
  33. 33.
    J. Li, L. Zhang, J. Zhu, Y. Liu, W. Hao, Ceram. Int. 41, 3456–3460 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Kubelka, F. Munk, Z. Tech. Phys. 12, 593–601 (1931)Google Scholar
  35. 35.
    S.D. Birajdar, P.P. Khirade, V.R. Bhagwat, A.V. Humbe, K.M. Jadhav, J. Alloy. Compd. 683, 513–526 (2016)CrossRefGoogle Scholar
  36. 36.
    P. Li, S. Wang, J. Li, Y. Wei, J. Lumin. 132, 220–225 (2012)CrossRefGoogle Scholar
  37. 37.
    M.H. Li, J.P. Xu, X.M. Chen, X.S. Zhang, Y.Y. Wu, P. Li, X.P. Niu, C.Y. Luo, L. Li, Superlattices Microstruct. 52, 824–833 (2012)CrossRefGoogle Scholar
  38. 38.
    J.H. Yang, M. Gao, L.L. Yang, Y.J. Zhang, J.H. Lang, D.D. Wang, Y.X. Wang, H.L. Liu, H.G. Fan, Appl. Surf. Sci. 255, 2646–2650 (2008)CrossRefGoogle Scholar
  39. 39.
    H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li, S.P. Wong, Nanotechnology 17, 4312 (2006)CrossRefGoogle Scholar
  40. 40.
    S. Modak, S. Acharya, A. Bandyopadhyay, S. Karan, S.K. Roy, P.K. Chakrabarti, J. Magn. Magn. Mater. 322, 283–289 (2010)CrossRefGoogle Scholar
  41. 41.
    N.S. Sabri, A.K. Yahya, M.K. Talari, J. Lumin. 132, 1735–1739 (2012)CrossRefGoogle Scholar
  42. 42.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)CrossRefGoogle Scholar
  43. 43.
    S. Vempati, A. Shetty, P. Dawson, K. Nanda, S.B. Krupanidhi, J. Cryst. Growth 343, 7–12 (2012)CrossRefGoogle Scholar
  44. 44.
    S.A. Ahmed, Results Phys. 7, 604–610 (2017)CrossRefGoogle Scholar
  45. 45.
    R. Elilarassi, G. Chandrasekaran, Mater. Sci. Semicond. Process. 14, 179–183 (2011)CrossRefGoogle Scholar
  46. 46.
    M.H. Sluiter, Y. Kawazoe, P. Sharma, A. Inoue, A.R. Raju, C. Rout, U.V. Waghmare, Phys. Rev. Lett. 94, 187204 (2005)CrossRefGoogle Scholar
  47. 47.
    D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16, 2115–2119 (2004)CrossRefGoogle Scholar
  48. 48.
    J. Mohapatra, D.K. Mishra, D. Mishra, A. Perumal, V.R.R. Medicherla, D.M. Phase, S.K. Singh, Mater. Res. Bull. 47, 1417–1422 (2012)CrossRefGoogle Scholar
  49. 49.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  50. 50.
    H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, C.P. Liu, Appl. Phys. Lett. 88, 242507 (2006)CrossRefGoogle Scholar
  51. 51.
    G. Ciatto, A. Di Trolio, E. Fonda, P. Alippi, A.M. Testa, A.A. Bonapasta, Phys. Rev. Lett. 107, 127206 (2011)CrossRefGoogle Scholar
  52. 52.
    K.C. Verma, R.K. Kotnala, Phys. Chem. Chem. Phys. 18, 5647–5657 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Thin Film Techniques and Optical TestXi’an Technological UniversityXi’anPeople’s Republic of China

Personalised recommendations