Skip to main content
Log in

Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the productive synthesis of nanocrystalline zinc substituted mixed ferrite (Ni1−xZnxFe2O4 (0 ≤ x ≤ 1)) particles via low-temperature citrate gel auto-combustion method. The structure and microstructure of the particles, elemental analysis, and complex impedance properties are carried out by PXRD, FESEM, EDS and impedance spectroscopy respectively. The increased lattice parameters with Zn2+ concentrations suggest the substitution of Zn2+ ions to Ni2+. Dielectric constant, dielectric loss and AC conductivity were studied as a function of frequency infer a significant alteration in the dielectric constant, dielectric loss and A.C. conductivity and also showed that zinc substituted ferrites possess low tangent loss (≈ 10−2) at high frequencies. Further, the impedance spectroscopic studies reveal that Zn2+ substituted (x = 0.2, 0.8 and 1) samples attain non-Debye type dielectric relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Valenzuela, Novel applications of ferrites. Phys. Res. Int. 2012, 1–9 (2012). https://doi.org/10.1155/2012/591839

    Article  Google Scholar 

  2. W. Callister, D. Rethwisch, Materials Science and Engineering: An Introduction (Wiley, New York, 2007). https://doi.org/10.1016/0025-5416(87)90343-0

    Google Scholar 

  3. A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990). http://www.worldcat.org/title/modern-ferrite-technology/oclc/645764348?referer=di&ht=edition. Accessed 22 September 2017

  4. N.A. Spaldin, Magnetic Materials: Fundamentals And Applications (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  5. R. Liu, H. Fu, H. Yin, P. Wang, L. Lu, Y. Tao, A facile sol combustion and calcination process for the preparation of Congo red. Powder Technol. 274, 418–425 (2015). https://doi.org/10.1016/j.powtec.2015.01.045

    Article  Google Scholar 

  6. Y. Wang, Y. Huang, Q. Wang, M. Zong, Preparation and electromagnetic properties of graphene-supported. Powder Technol. 249, 304–308 (2013). https://doi.org/10.1016/j.powtec.2013.08.024

    Article  Google Scholar 

  7. E. Oumezzine, S. Hcini, M. Baazaoui, E.K. Hlil, M. Oumezzine, Structural, magnetic and magnetocaloric properties of Pechini sol-gel method aqueous solution. Powder Technol. 278, 189–195 (2015). https://doi.org/10.1016/j.powtec.2015.03.022

    Article  Google Scholar 

  8. T. Sathitwitayakul, M.V. Kuznetsov, I.P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis. Mater. Lett. 75, 36–38 (2012). https://doi.org/10.1016/J.MATLET.2012.02.003

    Article  Google Scholar 

  9. M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol–gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 20, S517–S522 (2016). https://doi.org/10.1016/J.JSCS.2013.03.003

    Article  Google Scholar 

  10. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater. Chem. Phys. 93, 224–230 (2005). https://doi.org/10.1016/J.MATCHEMPHYS.2005.03.017

    Article  Google Scholar 

  11. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009). https://doi.org/10.1016/J.JMMM.2009.01.004

    Article  Google Scholar 

  12. S. Zahi, Synthesis, permeability and microstructure of the optimal nickel-zinc ferrites by sol-gel route. J. Electromagn. Anal. Appl. 2, 56–62 (2010). https://doi.org/10.4236/jemaa.2010.21009

    Google Scholar 

  13. S. Aliyeva, S. Babayev, T. Mehdiyev, Raman spectra of Ni1−XZnXFe2O4 nanopowders. J. Raman Spectrosc. 49, 271–278 (2018). https://doi.org/10.1002/jrs.5276

    Article  Google Scholar 

  14. N. Velinov, E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, V. Petkova, K. Koleva, B. Kunev, I. Mitov, Infrared diffuse reflectance spectra of micropowders of Ni1−xZnxFe2O4 ferrites. Phys. Solid State 59, 528–533 (2017). https://doi.org/10.1016/j.solidstatesciences.2012.05.023

    Google Scholar 

  15. A.A. Al-Ghamdi, F.S. Al-Hazmi, L.S. Memesh, F.S. Shokr, L.M. Bronstein, Effect of mechanochemical synthesis on the structure, magnetic and optical behavior of Ni1−xZnxFe2O4 spinel ferrites. Ceram. Int. 43, 6192–6200 (2017). https://doi.org/10.1016/j.ceramint.2017.02.017

    Article  Google Scholar 

  16. N.N. Jiang, Y. Yang, Y.X. Zhang, J.P. Zhou, P. Liu, C.Y. Deng, Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency. J. Magn. Magn. Mater. 401, 370–377 (2016). https://doi.org/10.1016/j.jmmm.2015.10.003

    Article  Google Scholar 

  17. D.K. Pradhan, P. Misra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115, 243904 (2014). https://doi.org/10.1063/1.4885420

    Article  Google Scholar 

  18. S. Mukherjee, S. Pradip, A.K. Mishra, D. Das, Zn substituted NiFe2O4 with very high saturation magnetization and negligible dielectric loss synthesized via a soft chemical route. Appl. Phys. A 116, 389–393 (2014). https://doi.org/10.1007/s00339-013-8140-2

    Article  Google Scholar 

  19. W. Yan, Q. Li, H. Zhong, Z. Zhong, Characterization and low-temperature sintering of Ni0.5Zn0.5Fe2O4 nano-powders prepared by refluxing method. Powder Technol. 192, 23–26 (2009). https://doi.org/10.1016/j.powtec.2008.11.010

    Article  Google Scholar 

  20. N. Dogan, A. Bingolbali, L. Arda, D. Akcan, Synthesis, structure, and magnetic properties of Ni1−xZnxFe2O4 nanoparticles. J. Supercond. Nov. Magn. 30, 3611–3617 (2016). https://doi.org/10.1007/s10948-016-3899-y

    Article  Google Scholar 

  21. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci. Mater. Electron. 28, 14965–14973 (2017). https://doi.org/10.1007/s10854-017-7369-5

    Article  Google Scholar 

  22. M.A. Gabal, S. Kosa, T.S. Al Mutairi, Structural and magnetic properties of Ni1−xZnxFe2O4 nano-crystalline ferrites prepared via novel chitosan method. J. Mol. Struct. 1063, 269–273 (2014). https://doi.org/10.1016/j.molstruc.2014.01.070

    Article  Google Scholar 

  23. J.M. Yang, K.L. Yang, An optimal low-temperature tartrate precursor method for the synthesis of monophasic nanosized ZnFe2O4. J. Nanoparticle Res. 11, 1739–1750 (2009). https://doi.org/10.1007/s11051-008-9537-2

    Article  Google Scholar 

  24. P.Y. Reyes-Rodríguez, D.A. Cortés-Hernández, J.C. Escobedo-Bocardo, J.M. Almanza-Robles, H.J. Sánchez-Fuentes, A. Jasso-Terán, L.E. De León-Prado, J. Méndez-Nonell, G.F. Hurtado-López, Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J. Magn. Magn. Mater. 427, 268–271 (2017). https://doi.org/10.1016/j.jmmm.2016.10.078

    Article  Google Scholar 

  25. W. Cai, C. Fu, W. Hu, G. Chen, X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. J. Alloys Compd. 554, 64–71 (2013). https://doi.org/10.1016/j.jallcom.2012.11.154

    Article  Google Scholar 

  26. H.S.M. Rahimi, P. Kamelii, M. Ranjbar, H. Hajihashemi, The effect of zinc doping on the structural and magnetic properties of Ni1−xZnxFe2O4. J. Mater. Sci. 48, 2969–2976 (2013). https://doi.org/10.1007/s10853-012-7074-y

    Article  Google Scholar 

  27. M. Ajmal, A. Maqsood, Influence of zinc substitution on structural and electrical properties of Ni1−XZnXFe2O4 ferrites. Mater. Sci. Eng. B 139, 164–170 (2007). https://doi.org/10.1016/j.mseb.2007.02.004

    Article  Google Scholar 

  28. A.R. Denton, N.W. Ashcroft, Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991). https://doi.org/10.1103/PhysRevA.43.3161

    Article  Google Scholar 

  29. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn (Prentice-Hall, Englewood Cliffs, 2001). doi:citeulike-article-id:3998040

    Google Scholar 

  30. A. Khorsand Zak, W.H. Abd. M.E. Majid, R. Abrishami, Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  Google Scholar 

  31. C. Upadhyay, H.C. Verma, S. Anand, Cation distribution in nanosized Ni-Zn ferrites. J. Appl. Phys. 95, 5746–5751 (2004). https://doi.org/10.1063/1.1699501

    Article  Google Scholar 

  32. P. Ravindranathan, K.C. Patil, Novel solid solution precursor method for the preparation of ultrafine Ni-Zn ferrites. J. Mater. Sci. 22, 3261–3264 (1987). https://doi.org/10.1007/BF01161190

    Article  Google Scholar 

  33. M. Kurian, D.S. Nair, Effect of preparation conditions on nickel zinc ferrite nanoparticles: a comparison between sol-gel auto combustion and co-precipitation methods. J. Saudi Chem. Soc. 28, S517–S522 (2016). https://doi.org/10.1016/j.jscs.2013.03.003

    Article  Google Scholar 

  34. S.S. Deshmukh, A.V. Humbe, A. Kumar, R.G. Dorik, K.M. Jadhav, Urea assisted synthesis of Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.8): magnetic and Mössbauer investigations. J. Alloys Compd. 704, 227–236 (2017). https://doi.org/10.1016/j.jallcom.2017.01.176

    Article  Google Scholar 

  35. W.A.A. Bayoumy, Synthesis and characterization of nano-crystalline Zn-substituted Mg-Ni-Fe-Cr ferrites via surfactant-assisted route. J. Mol. Struct. 1056–1057, 285–291 (2014). https://doi.org/10.1016/j.molstruc.2013.10.056

    Article  Google Scholar 

  36. R. Hassan, J. Hassan, M. Hashim, S. Paiman, R.S. Azis, Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying. J. Adv. Ceram. 3, 306–316 (2014). https://doi.org/10.1007/s40145-014-0122-0

    Article  Google Scholar 

  37. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res. Lett. 6, 1–8 (2011). https://doi.org/10.1007/s11671-010-9772-1

    Google Scholar 

  38. V.J. Angadi, B. Rudraswamy, E. Melagiriyappa, H.M. Somashekarappa, H. Nagabhushana, Effect of gamma irradiation on dielectric properties of manganese zinc nanoferrites. AIP Conf. Proc. 1591, 9–12 (2014). https://doi.org/10.1063/1.4872578

    Google Scholar 

  39. R. Peelamedu, C. Grimes, D. Agrawal, R. Roy, P. Yadoji, Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292–2295 (2003). https://doi.org/10.1557/JMR.2003.0320

    Article  Google Scholar 

  40. A. Thakur, P. Thakur, J.H. Hsu, Enhancement in dielectric and magnetic properties of In3+ substituted Ni-Zn nano-ferrites by coprecipitation method. IEEE Trans. Magn. 47, 4336–4339 (2011). https://doi.org/10.1109/TMAG.2011.2156394

    Article  Google Scholar 

  41. G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. 1, 19–24 (2010). https://doi.org/10.4236/msa.2010.11004

    Google Scholar 

  42. G. Ranga Mohan, D. Ravinder, A.V. Ramana Reddy, B.S. Boyanov, Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater. Lett. 40, 39–45 (1999). https://doi.org/10.1016/S0167-577X(99)00046-4

    Article  Google Scholar 

  43. M. Azizar Rahman, A.K.M. Akther Hossain, Electrical transport properties of Mn–Ni–Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 25803 (2014). https://doi.org/10.1088/0031-8949/89/02/025803

    Article  Google Scholar 

  44. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloys Compd. 509, 3917–3923 (2011). https://doi.org/10.1016/j.jallcom.2010.12.168

    Article  Google Scholar 

  45. T.S. Laverghetta, Modern Microwave Measurements and Techniques (Artech House, London, 1988). http://us.artechhouse.com/Modern-Microwave-Measurements-and-Techniques-P292.aspx. Accessed 21 October 2017

  46. A. Verma, D.C. Dube, Processing of nickel-zinc ferrites via the citrate precursor route for high-frequency applications. J. Am. Ceram. Soc. 88, 519–523 (2005). https://doi.org/10.1111/j.1551-2916.2005.00098.x

    Article  Google Scholar 

  47. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29–35 (2012). https://doi.org/10.1016/j.jallcom.2012.07.033

    Article  Google Scholar 

  48. S.F. Mansour, Frequency and composition dependence on the dielectric properties for Mg-Zn ferrite. Egypt J. Solids 28, 263–273 (2005)

    Google Scholar 

  49. E. Pervaiz, I.H. Gul, Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J. Phys. Conf. Ser. 439, 12015 (2013). https://doi.org/10.1088/1742-6596/439/1/012015

    Article  Google Scholar 

  50. S. Singh, N.K. Ralhan, R.K. Kotnala, K.C. Verma, Nanosize dependent electrical and magnetic properties of NiFe2O4 ferrite. Indian J. Pure Appl. Phys. 50, 739–743 (2012). http://nopr.niscair.res.in/bitstream/123456789/14782/1/IJPAP 50%2810%29739-743.pdf. Accessed 21 October 2017

  51. M. Belal Hossen, A.K.M. Akther Hossain, Influence of Al3+ substitution on impedance spectroscopy studies of Ni0.27Cu0.10Zn0.63AlxFe2–xO4. Adv. Mater. Lett. 6, 810–815 (2015). https://doi.org/10.5185/amlett.2015.5854

    Google Scholar 

  52. B. Kaur, L. Singh, V. Annapu Reddy, D.Y. Jeong, N. Dabra, J.S. Hundal, AC impedance spectroscopy, conductivity and optical studies of sr doped bismuth ferrite nanocomposites. Int. J. Electrochem. Sci. 11, 4120–4135 (2016). https://doi.org/10.20964/110353

    Article  Google Scholar 

  53. K.M. Batoo, Structural and electrical properties of Cu doped NiFe2O4 nanoparticles prepared through modified citrate gel method. J. Phys. Chem. Solids 72, 1400–1407 (2011). https://doi.org/10.1016/j.jpcs.2011.08.005

    Article  Google Scholar 

  54. M. Hashim, S.E. Alimuddin, S. Shirsath, R. Kumar, A.S. Kumar, J. Roy, R.K. Shah, Kotnala, Preparation and characterization chemistry of nano-crystalline Ni-Cu-Zn ferrite. J. Alloys Compd. 549, 348–357 (2013). https://doi.org/10.1016/j.jallcom.2012.08.039

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST PURSE lab, Mangaluru University for providing FESEM instrumentation facility. The authors also express their gratefulness to Dr. B J. Madhu, SJM Science College, Chitradurga.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Nagaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh Kumar, M.V., Shankarmurthy, G.J., Melagiriyappa, E. et al. Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method. J Mater Sci: Mater Electron 29, 12795–12803 (2018). https://doi.org/10.1007/s10854-018-9398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9398-0

Navigation