Skip to main content
Log in

Optical humidity sensor based on in situ and ex situ synthesized nAg/0.1%PVP composite coated on self supported PVP substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An optical based humidity sensor having linear response (R2 = 0.99) over a wide range (06–94%RH) and high sensitivity is reported using nAg/0.1%PVP nanocomposite. Nanocomposite is prepared using in-situ and ex-situ approaches by chemical reduction method with silver salt (AgNO3) as precursor, tri sodium citrate as reducing agent and PVP as capping agent. The nanocomposite is dip coated on hydrophilic PVP substrate of 80 µm thickness. The material is characterized by using UV–Vis, TEM and FTIR techniques. UV–Vis and TEM analysis are complementary to each other for exhibiting dependence of particle size on preparation approach − 10 nm (in-situ) to 40 nm (ex-situ). Humidity sensing mechanism is explained on the basis of FTIR spectra. Co-ordination between tertiary nitrogen () and C=O group with nAg particles during nanocomposite formation is evidenced from low humidity FTIR. Breaking of these bonds is evidenced from high humidity FTIR. In/PVP/6-PVP sensors offer higher sensitivity (~ 0.68 ± 0.04 (1/% RH)) as compared to Ex/PVP/4:5-PVP sensors [~ 0.31 ± 0.04 (1/% RH)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Sun, Z. Li, T. Wei, Y. Li, P. Cui, Sens. Actuators B 142, 197–203 (2009)

    Article  Google Scholar 

  2. C.R. Zamarreño, M. Hernaez, I. Del Villar, I.R. Matias, F.J. Arregui, Sens. Actuators B 146, 414–417 (2010)

    Article  Google Scholar 

  3. J. Mathew, Y. Semenov, G. Farrell, Sens. Actuators A 174, 47–51 (2012)

    Article  Google Scholar 

  4. M.V. Fuke, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, R.C. Aiyer, Talanta 78, 590–595 (2009)

    Article  Google Scholar 

  5. X. Liu, M. Jiang, Q. Sui, X. Geng, J. Mod. Opt. 63, 1668–1674 (2016)

    Article  Google Scholar 

  6. L. Alwis, T. Sun, K.T.V. Grattan, Measurement 46, 4052–4074 (2013)

    Article  Google Scholar 

  7. A. Urrutia, J. Goicoechea, F.J. Arregui, J. Sens. 227, 135–141 (2015)

    Google Scholar 

  8. B. Gu, M. Yin, A.P. Zhang, J. Qian, S. He, Opt. Express 19, 4140–4146 (2011)

    Article  Google Scholar 

  9. B.C. Yadav, R.C. Yadav, S. Singh, P.K. Dwivedi, H. Ryu, S. Kang, Opt. Laser Technol. 49, 68–74 (2013)

    Article  Google Scholar 

  10. M. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldarb, R.C. Aiyera, Talanta 76, 1035–1040 (2008)

    Article  Google Scholar 

  11. P.D. Mahapure, R.C. Aiyer, P.V. Adhyapaka, D.P. Amalnerkara, S.W. Gosavi, IEEE Xplore 10.1109/ISPTS.2012.6260936 (2012)

  12. M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Sens. Actuators B 49, 179–185 (1998)

    Article  Google Scholar 

  13. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, N.A. Vainos, Appl. Opt. 45, 4567–4571 (2006)

    Article  Google Scholar 

  14. B. Adhikari, S. Majumdar, Prog. Polym. Sci. 29, 699–766 (2004)

    Article  Google Scholar 

  15. M.V. Fuke, P. Kanitkar, M. Kulkarni, B.B. Kale, R.C. Aiyer, Talanta 81, 320–326 (2010)

    Article  Google Scholar 

  16. D. Malina, A. Sobczak-Kupiec, Z. Wzorek, Z. Kowalski, Dig. J. Nanomater. Biostruct. 7, 1527–1534 (2012)

    Google Scholar 

  17. O.P. Valmikanathan, O. Ostroverkhova, I.S. Mulla, K. Vijayamohanan, S.V. Atre, Polymer 49, 3413–3418 (2008)

    Article  Google Scholar 

  18. O. Eksik, M.A. Tasdelen, A.T. Erciyes, Y. Yagci, Compos. Interfaces 17, 357–369 (2010)

    Article  Google Scholar 

  19. P.D. Mahapure, R.C. Aiyer, S.W. Gosavi, IEEE Xplore, 978-1-4673-8018-8$415 (2015)

  20. Ratyakshi, R.P. Chauhan, Asian J. Chem. 21, S113–S116 (2009)

    Google Scholar 

  21. S. Piñero, S. Camero, S. Blanco, J. Phys. 786, 012020 (2017)

    Google Scholar 

  22. M.-R. Yang, K.-S. Chen, Sens. Actuators B 49, 240–247 (1998)

    Article  Google Scholar 

  23. M.V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, R.C. Aiyer, Talanta 76, 1035–1040 (2008)

    Article  Google Scholar 

  24. N. Giri, R.K. Natarajan, S. Gunasekaran, S. Shreemathi, Arch. Appl. Sci. Res. 3, 624–630 (2011)

    Google Scholar 

  25. B. Sadeghi, M.A.S. Sadjadi, A. Pourahmad, Int. J. Nanosci. Nanotechnol. 4, 3–12 (2008)

    Google Scholar 

  26. Z. Zhang, B. Zhao, L. Hu, J. Solid State Chem. 121, 105–110 (1996)

    Article  Google Scholar 

  27. X. Cong-Wen, Y. Hai-Tao, S. Cheng-Min, L. Zi-An, Z. Huai-Ruo, L. Fei, Y. Tian-Zhong, C. Shu-Tang, G. Hong-Jun, Chin. Phys. 14, 2269–2275 (2005)

    Article  Google Scholar 

  28. Abdalrahim alahmad, Int. J. ChemTech Res. 6, 450–459 (2014)

    Google Scholar 

  29. P.-G. Su, Y.L. Sun, C.C. Lin, Sens. Actuators B 113, 883–886 (2006)

    Article  Google Scholar 

  30. A. Goel, N. Rani, Open J. Inorg. Chem. 2, 67–73 (2012)

    Article  Google Scholar 

  31. S. Porel, S. Singh, S.S. Harsha, D.N. Rao, T.P. Radhakrishnan, Chem. Mater. 17, 9–12 (2005)

    Article  Google Scholar 

  32. A.C. Power, A.J. Betts, J.F. Cassidy, Analyst 135, 1645–1652 (2010)

    Article  Google Scholar 

  33. A. Zielinska, E. Skwarek, A. Zaleska, M. Gazda, J. Hupka, Procedia Chem. 1, 1560–1566 (2009)

    Article  Google Scholar 

  34. Y. Wang, Y. Li, S. Yang, G. Zhang, D. An, C. Wang, Q. Yang, X. Chen, X. Jing, Y. Wei, Nanotechnology 17, 3304–3307 (2006)

    Article  Google Scholar 

  35. L. Kabir, A.R. Mandal, S.K. Mandal, J. Exp. Nanosci. 3, 297–305 (2008)

    Article  Google Scholar 

  36. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, R.C. Aiyer, Sens. Actuators B 129, 106–112 (2008)

    Article  Google Scholar 

  37. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, J. Mol. Struct. 1157, 607–615 (2018)

    Article  Google Scholar 

  38. Y. Li, M.J. Yang, Sens. Actuators B 86, 155–159 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gangal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapure, P.D., Gangal, S.A., Aiyer, R.C. et al. Optical humidity sensor based on in situ and ex situ synthesized nAg/0.1%PVP composite coated on self supported PVP substrate. J Mater Sci: Mater Electron 29, 12543–12552 (2018). https://doi.org/10.1007/s10854-018-9370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9370-z

Navigation