Skip to main content
Log in

Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2(Fe2/3Mo1/3)O3 electroceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present communication, studies of some physical properties (i.e., crystal data, permittivity, impedance, electrical cobnduction and magnetic) of a multiferroic material with a chemical composition (SmLi)1/2(Fe2/3Mo1/3)O3 have been reported. Thermogravimetric analysis of the compound, prepared by cost effective ceramic technology processing, was executed to check the mass loss as well as the required decomposition temperature of the ingredients. An analysis of X-ray spectra or pattern suggests that the crystallization phase or cystal system of the compound at room temperature is orthorhombic. The broad studies of dielectric properties {relative dielectric constant (εr), and tangent loss (tan δ)} display their independence of temperature and frequency in the rage of (30–375 °C) and (1 kHz–1 MHz) respectively. The impedance spectroscopic technique has provided a considerable significant information regarding the grain, grain boundary contribution within the sample and relaxation mechanism of the compound. The occurrence of negative temperature coefficient behaviour (NTCR) is depicted by the further analysis of impedance parameters. The frequency–temperature dependence of conductivity follows the Johnson’s power Universal law. The Arrhenius plot (i.e., variation of electrical conductivity with temperature) is used to calculate the activation energy. Analysis of magnetization (M–H) loop shows weak ferromagnetism of the compound. The material possesses significantly high magnitude of magnetoelectric coefficient of 3.0 mV Cm− 1 Oe− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Peng, H. Kang, L. Liu, C. Hu, L. Fang, J. Chen, X. Xing, Solid State Sci. 15, 91 (2013)

    Article  Google Scholar 

  2. J.L. Rehspringer, J. Bursik, D. Niznansky, A. Klarikova, J. Magn. Magn. Mater. 211, 291 (2000)

    Article  Google Scholar 

  3. S.K. Pradhan, B.K. Roul, Phys. B 407, 2527 (2012)

    Article  Google Scholar 

  4. P. Priyadharshini, A. Pradeep, B. Sathyamoorty, G. Chandrasekaran, J. Phys. Chem. Solids 75, 797 (2014)

    Article  Google Scholar 

  5. E. Wu, POWD, an interactive powder diffraction data interpretations and Indexing Programme. Ver. 2.1, School of Physical Sciences, Flinders University of South Australia, Bedford Park, SA (1989)

  6. B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, J. Alloys Comp. 540, 267 (2012)

    Article  Google Scholar 

  7. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  8. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  9. S. Nath, S.K. Barik, R.N.P. Choudhary, J. Mater. Sci: Mater. Electron. 27, 8717 (2016)

    Google Scholar 

  10. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    Article  Google Scholar 

  11. S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Ceram. Int. 44, 4719 (2017)

    Article  Google Scholar 

  12. Y.K. Yadav, M.P.K. Sahoo, R.N.P. Choudhary, J. Alloys Compd. 490, 589 (2010)

    Article  Google Scholar 

  13. J.R. Macdonald, Solid State Ion. 13, 147 (1984)

    Article  Google Scholar 

  14. B. Pati, R.N.P. Choudhary, P.R. Das, J. Alloys Compd. 579, 218 (2013)

    Article  Google Scholar 

  15. S. Brahma, R.N.P. Choudhary, S.A. Shivsankar, J. Phys. Chem. Soli. 73, 357 (2012)

    Article  Google Scholar 

  16. N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Soli. Stat. Ionics 179, 689 (2008)

    Article  Google Scholar 

  17. M. Sahu, R.N.P. Choudhary, S. Das, S. Otta, B.K. Roul, J. Mater. Sci: Mater. Electron. 28, 15676 (2017)

    Google Scholar 

  18. S. Nath, S.K. Barik, R.N.P. Choudhary, AIP Conf. Proc. 1728, 020400 (2016)

    Article  Google Scholar 

  19. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Appl. Phys. A 88, 217 (2007)

    Article  Google Scholar 

  20. S. Nath, S.K. Barik, R.N.P. Choudhary, S.K. Barik, Phys. Lett. A 381, 2174 (2017)

    Article  Google Scholar 

  21. S. Acharya, A.K. Deb, D. Das, P.K. Chakrabarti, Mater. Lett. 65, 1280 (2011)

    Article  Google Scholar 

  22. S. Nath, S.K. Barik, R.N.P. Choudhary, J. Mater. Sci: Mater. Electron. 26, 8199 (2015)

    Google Scholar 

  23. Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Ceram. Int. 40, 5853 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitudes to AICTE for doing experimental work under project scheme [No.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S., Barik, S.K., Hajra, S. et al. Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2(Fe2/3Mo1/3)O3 electroceramics. J Mater Sci: Mater Electron 29, 12251–12257 (2018). https://doi.org/10.1007/s10854-018-9337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9337-0

Navigation