Skip to main content
Log in

Cytotoxicity characteristics of green assisted-synthesized superparamagnetic maghemite (γ-Fe2O3) nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles such as Fe3O4 and γ-Fe2O3 are extensively used in medical application, i.e. drug delivery, MRI, etc. Chemical toxicity and side-effect behaviors always play an important role in such applications. Thus, synthesis of such less-toxic compounds with green technology is privilege. In this study, the extract prepared from mango leaves was used for the preparation of iron oxide nanoparticles (γ-Fe2O3) using FeSO4 as iron source with the green-assisted route. The X-ray diffraction pattern indicated single-phase formation with the average crystallite size of 7 ± 2 nm. HRTEM micrographs indicated a dot-cloud-surrounded like particles ranging from 1 to 12 nm. Fourier Transform Infrared (FT-IR) spectroscopy showed two absorption bands at 457 and 634 cm−1, which are attributed to octahedral and tetrahedral sites of Fe–O band, respectively. A vibrating sample magnetometer (VSM) indicated a saturation magnetization (Ms) value about 53 emu/g with negligible coercivity (Hc), suggesting superparamagnetic behavior of the synthesized nanoparticles. The cytotoxicity was evaluated by exposing the breast cancer cell type (MCF7) to different concentrations of the γ-Fe2O3 nanoparticles. MTT assay results revealed that the growth and survival of MCF7 cells directly depend on the concentration of synthesized iron oxide nanoparticles. It was found that up to concentration of 200 µg/mL, cell survival has not yet reached 50%, which indicates the safety of nanoparticles and lack of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67(1), 55–60 (2006)

    Article  Google Scholar 

  2. S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, A. Hajalilou, K. Ahsanul, Synthesis, characterization, and cytotoxicity of iron oxide nanoparticles. Adv. Mater. Sci. Eng. (2013). https://doi.org/10.1155/2013/710432

    Google Scholar 

  3. A. Trabolsi, T. Skorjanc, F. Benyettou, J.C. Olsen, Design of organic macrocycle-modified iron-oxide nanoparticles for drug delivery. Chem. A Eur. J. 23(35), 8333–8347 (2017)

    Article  Google Scholar 

  4. R.L. Penn, C. Zhu, H. Xu, D.R. Veblen, Iron oxide coatings on sand grains from the Atlantic coastal plain: high-resolution transmission electron microscopy characterization. Geology 29(9), 843–846 (2001)

    Article  Google Scholar 

  5. R.V. Morris, H.V. Lauer, C.A. Lawson, E.K. Gibson, G.A. Nace, C. Stewart, Spectral and other physicochemical properties of submicron powders of hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH), and lepidocrocite (γ-FeOOH). J. Geophys. Res. 90(B4), 3126–3144 (1985)

    Article  Google Scholar 

  6. V. Sreeja, P.A. Joy, Microwave–hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater. Res. Bull. 42(8), 1570–1576 (2007)

    Article  Google Scholar 

  7. K. Woo, H.J. Lee, J.P. Ahn, Y.S. Park, Sol–gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15(20), 1761–1764 (2003)

    Article  Google Scholar 

  8. M. Aliahmad, N.N. Moghaddam, Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater. Sci. 31(2), 264–268 (2013)

    Google Scholar 

  9. V. Chhabra, P. Ayyub, S. Chattopadhyay, A.N. Maitra, Preparation of acicular γ-Fe2O3 particles from a microemulsion-mediated reaction. Mater. Lett. 26(1–2), 21–26 (1996)

    Article  Google Scholar 

  10. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)

    Article  Google Scholar 

  11. G. Geoprincy, B.V. Srri, U. Poonguzhali, N.N. Gandhi, S. Renganathan, A review on green synthesis of silver nanoparticles. Asian J. Pharm. Clin. Res. 6(1), 8–12 (2013)

    Google Scholar 

  12. Y.W. Jun, Y.M. Huh, J.S. Choi, J.H. Lee, H.T. Song, S. Kim, S. Kim, S. Yoon, K.S. Kim, J.S. Shin, J.S. Suh, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127(16), 5732–5733 (2005)

    Article  Google Scholar 

  13. A. Hajalilou, A. Kianvash, H. Lavvafi, K. Shameli, Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. J. Mater. Sci. 29(2), 1690–1717 (2018)

    Google Scholar 

  14. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940–13941 (2003)

    Article  Google Scholar 

  15. N. Thovhogi, A. Diallo, A. Gurib-Fakim, M. Maaza, Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J. Alloy. Compd. 647, 392–396 (2015)

    Article  Google Scholar 

  16. A. Hajalilou, S.A. Mazlan, S.T. Shilan, E. Abouzari-Lotf, Enhanced magnetorheology of soft magnetic carbonyl iron suspension with binary mixture of Ni–Zn ferrite and Fe3O4 nanoparticle additive. Colloid Polym. Sci. 295(9), 1499–1510 (2017)

    Article  Google Scholar 

  17. A. Ebrahiminezhad, S. Taghizadeh, Y. Ghasemi, A. Berenjian, Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material. Sci. Total Environ. 621, 1527–1532 (2018)

    Article  Google Scholar 

  18. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011)

    Article  Google Scholar 

  19. T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172(1), 258–266 (2011)

    Article  Google Scholar 

  20. M. Rahimi-Nasrabadi, F. Ahmadi, A. Fosooni, Influence of capping agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci. 28(1), 537–542 (2017)

    Google Scholar 

  21. M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci. 27(11), 11873–11878 (2016)

    Google Scholar 

  22. M. Rahimi-Nasrabadi, Strontium molybdate nanostructures: synthesis of different shapes through a new approach and its photocatalyst application. J. Mater. Sci. 28(2), 2200–2205 (2017)

    Google Scholar 

  23. E. Al-Kalifawi, Green synthesis of magnetite iron oxide nanoparticles by using Al-Abbas’s (AS) hund fruit (Citrus medica) var Sarcodactylis Swingle extract and used in Al-’alqami River Water Treatment. J. Nat. Sci. Res. 5, 20 (2015)

    Google Scholar 

  24. V. Makarov, A. Love, O. Sinitsyna, S.M.I. Yaminsky, M. Taliansky, N. Kalinina, Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6(1), 35–44 (2014)

    Google Scholar 

  25. J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62(2), 144–149 (2010)

    Article  Google Scholar 

  26. M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, An in vitro study of bare and poly (ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20(22), 225104 (2009)

    Article  Google Scholar 

  27. T.L. Riss, R.A. Moravec, Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays. Assay Drug Dev. Technol. 2(1), 51–62 (2004)

    Article  Google Scholar 

  28. K. Ali, A.K. Sarfraz, I.M. Mirza, A. Bahadur, S. Iqbal, A. ul Haq, Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr. Appl. Phys. 15(8), 925–929 (2015)

    Article  Google Scholar 

  29. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. D 48(14), 145001 (2015)

    Article  Google Scholar 

  30. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40(4), 5881–5887 (2014)

    Article  Google Scholar 

  31. A.R. Mirzazadeh, A. Kianvash, A. Hajalilou, Plating of Cu and Ni metals on Mg-ferrite sintered bodies by an electroless method and an investigation of magnetic behavior. J. Mater. Sci. 29(7), 5753–5760 (2018)

    Google Scholar 

  32. M. Sabbaghan, P. Sofalgar, Single-phase γ-Fe2O3 nanoparticles synthesized by green ionothermal method and their magnetic characterization. Ceram. Int. 42(15), 16813–16816 (2016)

    Article  Google Scholar 

  33. L. Yin, J. Wang, J. Yang, Y. Nuli, A novel pyrolyzed polyacrylonitrile-sulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem. 21(19), 6807–6810 (2011)

    Article  Google Scholar 

  34. A. Hajalilou, E. Abouzari-Lotf, V. Abbasi-Chianeh, T.R. Shojaei, E. Rezaie, Inclusion of octahedron-shaped ZnFe2O4 nanoparticles in combination with carbon dots into carbonyl iron based magnetorheological suspension as additive. J. Alloy. Compd. 737, 536–548 (2018)

    Article  Google Scholar 

  35. B. Gilbert, J.E. Katz, J.D. Denlinger, Y. Yin, R. Falcone, G.A. Waychunas, Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidized magnetite nanoparticles. J. Phys. Chem. C 114(50), 21994–22001 (2010)

    Article  Google Scholar 

  36. P. Kumar, H.K. Malik, A. Ghosh, R. Thangavel, K. Asokan, Bandgap tuning in highly c-axis oriented Zn1–xMgxO thin films. Appl. Phys. Lett. 102(22), 221903 (2013)

    Article  Google Scholar 

  37. T.B. Zou, E.Q. Xia, T.P. He, M.Y. Huang, Q. Jia, H.W. Li, Ultrasound-assisted extraction of mangiferin from mango (Mangifera indica L.) leaves using response surface methodology. Molecules 19(2), 1411–1421 (2014)

    Article  Google Scholar 

  38. J.A. Severi, Z.P. Lima, H. Kushima, A.R. Monteiro Souza Brito, L. Campaner dos Santos, W. Vilegas, C.A. Hiruma-Lima, Polyphenols with antiulcerogenic action from aqueous decoction of mango leaves (Mangifera indica L.). Molecules 14(3), 1098–1110 (2009)

    Article  Google Scholar 

  39. Q. Kanwal, I. Hussain, H. Latif Siddiqui, A. Javaid, Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat. Product Res. 24(20), 1907–1914 (2010)

    Article  Google Scholar 

  40. J.C. Barreto, M.T. Trevisan, W.E. Hull, G. Erben, E.S. de Brito, B. Pfundstein, G. Würtele, B. Spiegelhalder, R.W. Owen, Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J. Agric. Food Chem. 56(14), 5599–5610 (2008)

    Article  Google Scholar 

  41. H. Abdollah, H. Mansor, E.K. Reza, M.M. Taghi, Effect of milling atmosphere on structural and magnetic properties of Ni–Zn ferrite nanocrystalline. Chin. Phys. B 24(4), 048102 (2015)

    Article  Google Scholar 

  42. A. Hajalilou, S.A. Mazlan, H. Lavvafi, K. Shameli, Field Responsive Fluids as Smart Materials (Springer, Singapore, 2016)

    Book  Google Scholar 

  43. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017). https://doi.org/10.1016/j.triboint.2017.08.012

    Google Scholar 

  44. A. Hajalilou, M. Hashim, M.T. Masoudi, A comparative study of in-situ mechanochemically synthesized Mn0.5Zn0.5Fe2O4 ferrite nanoparticles in the MnO/ZnO/Fe2O3 and MnO2/Zn/Fe2O3 systems. Ceram. Int. 41(6), 8070–8079 (2015)

    Article  Google Scholar 

  45. A. Hajalilou, M. Hashim, M. Abbasi, H.M. Kamari, H. Azimi, A comparative study on the effects of different milling atmospheres and sintering temperatures on the synthesis and magnetic behavior of spinel single phase Ni0.64Zn0.36Fe2O4 nanocrystals. J. Mater. Sci. 26(10), 7468–7483 (2015)

    Google Scholar 

  46. M.T. López-López, J.D.G. Durán, A.V. Delgado, F. González-Caballero, Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J. Colloid Interface Sci. 291(1), 144–151 (2005)

    Article  Google Scholar 

  47. A. Hajalilou, M. Hashim, H.M. Kamari, M.T. Masoudi, Effects of milling atmosphere and increasing sintering temperature on the magnetic properties of nanocrystalline Ni0.36Zn0.64Fe2O4. J. Nanomater. 16(1), 232 (2015)

    Google Scholar 

  48. B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 14(11), 21266–21305 (2013)

    Article  Google Scholar 

  49. J.F. Gregg, I. Petej, E. Jouguelet, C. Dennis, Spin electronics—a review. J. Phys. D 35(18), R121 (2002)

    Article  Google Scholar 

  50. M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41(11), 4306–4334 (2012)

    Article  Google Scholar 

  51. Z. Bakhtiary, J. Barar, A. Aghanejad, A.A. Saei, E. Nemati, J. Ezzati Nazhad Dolatabadi, Y. Omidi, Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm. 43(8), 1244–1253 (2017)

    Article  Google Scholar 

  52. S. Neethirajan, D.S. Jayas, Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4(1), 39–47 (2011)

    Article  Google Scholar 

  53. B. Ankamwar, T.C. Lai, J.H. Huang, R.S. Liu, M. Hsiao, C.H. Chen, Y.K. Hwu, Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21(7), 075102 (2010)

    Article  Google Scholar 

  54. A.K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13), 1565–1573 (2005)

    Article  Google Scholar 

  55. S.Y. Liu, L. Long, Z. Yuan, L.P. Yin, R. Liu, Effect and intracellular uptake of pure magnetic Fe3O4 nanoparticles in the cells and organs of lung and liver. Chin. Med. J. 122(15), 1821–1825 (2009)

    Google Scholar 

  56. V. Chobot, F. Hadacek, L. Kubicova, Effects of selected dietary secondary metabolites on reactive oxygen species production caused by iron (II) autoxidation. Molecules 19(12), 20023–20033 (2014)

    Article  Google Scholar 

  57. G. Huang, H. Chen, Y. Dong, X. Luo, H. Yu, Z. Moore, E.A. Bey, D.A. Boothman, J. Gao, Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2), 116 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Kianvash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali Ogholbeyg, A., Kianvash, A., Hajalilou, A. et al. Cytotoxicity characteristics of green assisted-synthesized superparamagnetic maghemite (γ-Fe2O3) nanoparticles. J Mater Sci: Mater Electron 29, 12135–12143 (2018). https://doi.org/10.1007/s10854-018-9321-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9321-8

Navigation