Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods

Article
  • 8 Downloads

Abstract

Zinc oxide (ZnO) nanorods (NRs) with high transmittance and low resistance were produced on glass substrates in two steps. Initially, a ZnO seed layer was produced via sol–gel spin coating and heat treatment, and in the second step ZnO-NRs were grown on the ZnO seed layer via hydrothermal growth. The ZnO samples were identified by XRD. Average crystallite sizes were found to be 45 and 60 nm, for the ZnO seed layer and the ZnO-NRs, respectively, from XRD results using the Scherrer formula. Average grain sizes of the ZnO thin films were determined with FE-SEM and found to be 62 and 68 nm for the ZnO seed layer and the ZnO-NRs, respectively. The ZnO-NRs were very dense when grown to a (film) thickness exceeding that of the seed layer. After the growth of the ZnO-NRs, the starting thickness of ZnO seed layer was reduced from 360 to 60 nm. This revealed that the ZnO-NRs’ growth consumes the sol–gel deposited ZnO seed layer significantly, which in turn affects the NR array’s properties. The electrical conductivity values of the ZnO seed layer and ZnO-NRs/ZnO seed structure films were measured as 6.98 × 10−9 and 2.08 × 10−8 Ω−1 cm−1 at 25 °C, and 9.31 × 10−8 and 8.99 × 10−7 Ω−1 cm−1 at 300 °C, respectively. In other words, the ZnO-NRs/ZnO seed structure had higher electrical conductivity than the starting ZnO seed layer alone. In agreement, the ZnO-NRs/ZnO seed structure had a much higher transmittance (80–90% in the UV–Vis range) than the starting seed layer. These suggested that the ZnO-NRs has better crystal quality with lower defects along their length and hence the seed layer consumption is a benefical factor in obtaining ZnO NR arrays with high quality.

Notes

Acknowledgements

This research is financially supported by TUBITAK (The Scientific and Technological Research Council of Turkey) project number 114Z572, and Çankırı Karatekin University (BAP; FF28015B12).

References

  1. 1.
    N. Han, F. Wang, J.C. Ho, Nanomater. Energy 1, 4 (2011)CrossRefGoogle Scholar
  2. 2.
    R.H. Horng, S.L. Ou, C.Y. Huang, P. Ravadgar, C.I. Wu, Thin Solid Films 605, 30 (2016)CrossRefGoogle Scholar
  3. 3.
    M.D. Reyes Tolosa, J. Orozco-Messana, A.N.C. Lima, R. Camaratta, M. Pascual, M.A. Hernandez-Fenollosa, J. Electrochem. Soc. 158, E107 (2011)CrossRefGoogle Scholar
  4. 4.
    J.C. Sun, J.Z. Zhao, H.W. Liang, J.M. Bian, L.Z. Hu, H.Q. Zhang, X.P. Liang, W.F. Liu, G.T. Du, Appl. Phys. Lett. 90, 121 (2007)Google Scholar
  5. 5.
    L. Vayssieres, Adv. Mater. 15, 464 (2003)CrossRefGoogle Scholar
  6. 6.
    P.N. Mbuyisa, O.M. Ndwandwe, C. Cepek, Thin Solid Films 578, 7 (2015)CrossRefGoogle Scholar
  7. 7.
    N. Huang, M.W. Zhub, L.J. Gaoa, J. Gonga, C. Suna, X. Jiang, Appl. Surf. Sci. 257, 6026 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Kim, G. Nam, H. Park, H. Yoon, S.-H. Lee, J.S. Kim, J.S. Kim, D.Y. Kim, S.O. Kim, J.Y. Leem, Bull. Korean Chem. Soc. 34, 1205 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, Materials 6, 3584 (2013)CrossRefGoogle Scholar
  10. 10.
    L.W. Brooks, J.M. Mativetsky, A. Woll, D. Smilgies, Y.L. Loo, Org. Electron. 14, 3477 (2013)CrossRefGoogle Scholar
  11. 11.
    S.Y. Pung, K.L. Choy, X. Hou, C. Shan, Nanotechnology 19, 435609 (2008)CrossRefGoogle Scholar
  12. 12.
    T.A.N. Peiris, H. Alessa, J.S. Sagu, I.A. Bhatti, P. Isherwood, K.G.U. Wijayantha, J. Nanopart. Res. 15, 2115 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Saini, P. Mele, H. Honda, T. Suzuki, K. Matsumoto, K. Miyazaki, A. Ichinose, L.M. Luna, R. Carlini, A. Tiwari, Thin Solid Films 605, 289 (2016)CrossRefGoogle Scholar
  14. 14.
    H.G. Chen, Z.W. Li, Appl. Surf. Sci. 258, 556 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, W. Que, Sol. Energy. Mater. Sol. C 94, 2181 (2010)CrossRefGoogle Scholar
  16. 16.
    C. Zhang, J. Phys. Chem. Solids 71, 364 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.C. Yoon, K.S. Park, S.D. Kim, Thin Solid Films 597, 125 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Singh, A. Nanda, Synth. React. Inorg. Met. 45, 1121 (2015)CrossRefGoogle Scholar
  19. 19.
    J.D. Major, R.T. Zaera, E. Azaceta, L. Bowen, K. Durose, Sol. Energy Mater. Sol. C 160, 107 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurangb, S. Yerci, H.E. Unalan, V. Barrioz, Y. Qu, L. Bowen, A.K. Gürlek, P. Maiello, R. Turan, S.J.C. Irvine, Sol. Energy Mater. Sol. C 176, 100 (2018)CrossRefGoogle Scholar
  21. 21.
    K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 509, 7723 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Xu, Z.L. Wang, Nano Research 4, 1013 (2011)CrossRefGoogle Scholar
  23. 23.
    Bruker AXS GmbH, Diffracplus PDF Maint Powder Diffraction Database Manager Software, Printed in The Federal Republic of Germany (2000)Google Scholar
  24. 24.
    L.W. Ji, S.M. Peng, J.S. Wu, W.S. Shih, C.Z. Wu, I.T. Tang, J. Phys. Chem. Solids 70, 1359 (2009)CrossRefGoogle Scholar
  25. 25.
    G. Kartopu, V. Barrioz, S.J.C. Irvine, A.J. Clayton, S. Monir, D.A. Lamb, Thin Solid Films 558, 374 (2014)CrossRefGoogle Scholar
  26. 26.
    J.S. Park, I. Mahmud, H.J. Shin, M.K. Park, A. Ranjkesh, D.K. Lee, H.-R. Kim, Appl. Surf. Sci. 362, 132 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Yilmaz, O. Turkoglu, I. Belenli, Mater. Chem. Phys. 112, 472 (2008)CrossRefGoogle Scholar
  28. 28.
    H. Colak, O. Turkoglu, Mater. High Temp. 29, 344 (2012)CrossRefGoogle Scholar
  29. 29.
    J.B. Lee, H.J. Le, S.H. Seo, J.S. Park, Thin Solid Films 398–399, 641 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Sawalha, A.M. Abdeen, A. Sedky, Physica B 404, 1316 (2009)CrossRefGoogle Scholar
  31. 31.
    D.J. Kwak, B.W. Park, Y.M. Sung, J. Korean Phys. Soc. 55, 1940 (2009)CrossRefGoogle Scholar
  32. 32.
    M.I. Khan, K.A. Bhatti, R. Qindeel, L.G. Bousiakou, N. Alonizan, F. Aleem, Results Phys. 6, 156 (2016)CrossRefGoogle Scholar
  33. 33.
    A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, R.Y. Borse, J. Optoelectron. Biomed. Mater. 1, 226 (2009)Google Scholar
  34. 34.
    C.S. Hong, H.H. Park, H.H. Park, H.J. Chang, J. Electroceram. 22, 353 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceÇankırı Karatekin UniversityÇankırıTurkey
  2. 2.Kayseri Vocational CollegeErciyes UniversityKayseriTurkey
  3. 3.Centre for Solar Energy Research, OpTIC CentreSwansea UniversitySt. AsaphUK

Personalised recommendations