Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films

  • P. Prabukanthan
  • S. Thamaraiselvi
  • G. Harichandran


Iron pyrite (FeS2) thin films have been deposited onto indium doped tin oxide coated glass substrate using two sulphur anion sources such as thiourea [(NH2)2CS] and sodium thiosulfate [Na2S2O3] by electrochemical deposition method. The profilometer analysis shows that roughness of FeS2 thin films obtained low for (NH2)2CS than the Na2S2O3 as an anion sources. The X-ray diffraction analysis confirms that as-deposited FeS2 thin films shows cubic system with (200) plane preferential orientation for using (NH2)2CS. When Na2S2O3 is used it results in a cubic system (200) along with hexagonal (201) of FeS reflection peak signifying a mixed phase. The optical studies of the thin films deposited using (NH2)2CS shows the bandgap at 0.98 eV, while the bandgap for Na2S2O3 was 0.92 V. Atomic force microscopy images shows a crack free and densely packed morphology of FeS2 thin films obtained for both anion sources. The electrochemical impedance spectra study of FeS2 thin film exposed that less of charge transfer resistance and fine conductivity was obtained from the (NH2)2CS than Na2S2O3 as a sulfur source. The photocurrent study of as-deposited thin films shows that a significant by enhanced photocurrent response for (NH2)2CS compared to Na2S2O3 used thin films. The electrocatalytic activity of as deposited FeS2 thin films shows that better I/I3 redox couple when investigated by the cyclic voltammetry. The as-deposited FeS2 thin films obtained from the (NH2)2CS as an anion source is capable of to substituting the for platinum electrode.



One of the authors (P. Prabukanthan) wishes to acknowledge University Grant Commission (UGC), India, for the financial assistance through major research project (MRP) scheme [File No. 43-399/2014(SR)]. Dr. K. Anbumani, Associate Professor, Institute of Co-operative and Corporate Management Research and Training, Lucknow, India for the English correction of the manuscript.


  1. 1.
    S. Jana, P. Mondal, S. Tripathi, A. Mondal, B. Chakraborty, Electrochemical synthesis of FeS2 thin film: an effective terephthalic acid degradation. J. Alloys Compd. 646, 893–899 (2015). CrossRefGoogle Scholar
  2. 2.
    S.Y. Huang, X.Y. Liu, Q.Y. Li, J. Chen, Pyrite films synthesized for lithium-ion batteries. J. Alloys Compd. 472, L9–L12 (2009). CrossRefGoogle Scholar
  3. 3.
    H.Y. Zhou, S.L. Xiong, L.Z. Wei, B.J. Xi, Y.C. Zhu, Y.T. Qian, Acetylacetone-directed controllable synthesis of Bi2S3 nanostructures with tunable morphology. Cryst. Growth Des. 9, 3862–3867 (2009). CrossRefGoogle Scholar
  4. 4.
    S.L. Xiong, X.G. Zhang, Y.T. Qian, CdS with various novel hierarchical nanostructures by nanobelts/nanowires self assembly: controllable preparation and their optical properties. Cryst. Growth Des. 9, 5259–5265 (2009). CrossRefGoogle Scholar
  5. 5.
    J.F. Lu, X.H. Zeng, H.F. Liu, W. Zhang, Y. Zhang, Controlled growth and photoluminescence of one dimensional and plate like ZnS nanostructures. Appl. Surf. Sci. 258, 8538–8541 (2012). CrossRefGoogle Scholar
  6. 6.
    X.L. Yu, Y. Wang, R.K. Zheng, J.F. Qu, H.L.W. Chan, C.B. Cao, Synthesis and magnetic characterizations of three dimensional iron sulfide nanostructures. Cryst. Growth Des. 9, 1293–1296 (2009). CrossRefGoogle Scholar
  7. 7.
    T. Biegler, Oxygen reduction on sulphide minerals: part II. Relation between activity and semiconducting properties of pyrite electrodes. J. Electroanal. Chem. Interfacial Electrochem. 70, 265–275 (1976). CrossRefGoogle Scholar
  8. 8.
    G. Srivastava, C.K. Das, A. Das, S.K. Singh, M. Roy, H. Kim, N. Sethey, A. Kumar, R.K. Sharma, D. Philip, M. Das, Seed treatment with iron pyrite FeS2 nanoparticles increases the production of spinach. RSC Adv. 4, 58495–58504 (2014). CrossRefGoogle Scholar
  9. 9.
    Y. Bai, J. Yeom, M. Yang, S.H. Cha, K. Sun, N.A. Kotav, Universal synthesis of single phase pyrite nanoparticles, nanowires and nanosheets. J. Phys. Chem. C 117, 2567–2573 (2013). CrossRefGoogle Scholar
  10. 10.
    P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Single step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells. J. Elecrtochem. Soc. 164, D581–D589 (2017). CrossRefGoogle Scholar
  11. 11.
    A. Layek, S. Middya, P.P. Ray, Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell. J. Mater. Sci. Mater. Electron. 24, 3749–3755 (2013). CrossRefGoogle Scholar
  12. 12.
    S. Middya, A. Layek, A. Dey, P.P. Ray, Synthesis of nanocrystalline FeS2 with increased band gap for solar energy harvesting. J. Mater. Sci. Technol. 30, 770–775 (2014). CrossRefGoogle Scholar
  13. 13.
    A.M. Karguppikar, V.G. Vedeshawar, Transport properties of thin iron pyrite films. Phys. Status Solidi A 95, 717–720 (1986). CrossRefGoogle Scholar
  14. 14.
    C. De las Heras, C. Sanchez, Characterization of iron pyrite thin films obtained by flash evaporations. Thin Solid Films 199, 259–267 (1991). CrossRefGoogle Scholar
  15. 15.
    S. Fiechter, J. Mai, A. Ennaoui, Chemical vapour transport of pyrite (FeS2) with halogen (Cl, Br, I). J. Cryst. Growth 78, 438–444 (1986). CrossRefGoogle Scholar
  16. 16.
    G. Chatzitheodorou, S. Fiechter, R. Könenkamp, M. Kunst, W. Jaegermann, H. Tribusch, Thin photoactive FeS2 (pyrite) films. Mater. Res. Bull. 21, 1481–1487 (1986). CrossRefGoogle Scholar
  17. 17.
    G. Pimenta, V. Schroder, W. Kautek, B. Bunsenges, Thin pyrite films prepared by sulphurization of electrodeposited iron films. J. Phys. Chem. 95, 1470–1475 (1991). Google Scholar
  18. 18.
    A. Yamamoto, M. Nakamura, A. Seki, Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2SX. Sol. Energy Mater. Sol. Cells 75, 451–456 (2003). CrossRefGoogle Scholar
  19. 19.
    P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011). Google Scholar
  20. 20.
    N. E´jazi, M. Aghaziarati, Determination of optimum condition to produce nanocrystalline pyrite by solvothermal synthesis method. Adv. Power Technol. 23, 352–357 (2012). CrossRefGoogle Scholar
  21. 21.
    P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau, Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, in Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineers (IEEE), pp. 002965–002969, (2010).
  22. 22.
    B. Thomas, T. Cibik, C. Höpfner, K. Diesner, G. Ehlers, S. Fiechter, K. Ellmer, Formation of secondary iron-sulphur phases during the growth of polycrystalline iron pyrite FeS2 thin films by MOCVD. J. Mater. Sci. Mater. Electron. 9, 61–64 (1998). CrossRefGoogle Scholar
  23. 23.
    H. Ge, L. Hai, R.R. Prabhakar, L.Y. Ming, T. Sritharan, Investigation of photocarrier losses in pyrite FeS2 Film consisting single crystal nanocubes. RSC Adv. 4, 16489–16496 (2014). CrossRefGoogle Scholar
  24. 24.
    Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo, S. Zheng, An efficient precursor to synthesize various FeS2 nanostructure via a simple hydrothermal synthesis method. Cryst. Eng. Commun. 18, 6262–6271 (2016). CrossRefGoogle Scholar
  25. 25.
    S. Kar, S. Chaudhuri, Solvothermal synthesis of nanocrystalline FeS2 with different morphologies. Chem. Phys. Lett. 398, 22–26 (2004). CrossRefGoogle Scholar
  26. 26.
    Y.Z. Dong, Y.F. Zheng, H. Duan, Y.F. Sun, Y.H. Chen, Formation of pyrite (FeS2) thin films by thermal-sulfurating electrodeposition films at different temperature. Mater. Lett. 59, 2398–2402 (2005). CrossRefGoogle Scholar
  27. 27.
    A.B. Kashyout, A.S. Ari, G. Monforte, F. Crea, V. Antonucci, N. Giordano, Electrochemical deposition of ZnFeS thin film semiconductors on tin oxide substrates. Sol. Energy Mater. Sol. Cells 37, 43–53 (1995). CrossRefGoogle Scholar
  28. 28.
    D.C. Coffey, O.G. Reid, D.B. Rodovsky, G.P. Bartholomew, D.S. Ginger, Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett. 7, 738–744 (2007). CrossRefGoogle Scholar
  29. 29.
    P. Prabukanthan, G. Harichandran, Electrochemical deposition of n-type ZnSe thin film buffer layer for solar cells. J. Electrochem. Soc. 14, D736–D741 (2014). CrossRefGoogle Scholar
  30. 30.
    K. Sun, Z. Su, J. Yang, Z. Han, F. Liu, Y. Lai, J. Li, Y. Liu, Fabrication of pyrite FeS2 thin films by sulfurizing oxide precursor films deposited via successive ionic layer adsorption and reaction method. Thin Solid Films 542, 123–128 (2013). CrossRefGoogle Scholar
  31. 31.
    J. Xia, X. Lu, W. Gao, J. Jiao, H. Feng, L. Chen, Hydrothermal growth of Sn4+-doped FeS2 cubes on FTO substrates and its photoelectrochemical properties. Electrochim. Acta 56, 6932–6939 (2011). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. Prabukanthan
    • 1
  • S. Thamaraiselvi
    • 1
  • G. Harichandran
    • 2
  1. 1.Materials Chemistry Lab, Department of ChemistryMuthurangam Government Arts CollegeVelloreIndia
  2. 2.Department of Polymer ScienceUniversity of Madras, Guindy CampusChennaiIndia

Personalised recommendations