Luminescent property and application research of red molybdate phosphors for W-LEDs

Article

Abstract

Gd2(MoO4)3:10%Eu3+ and AgGdMo2O8:10%Eu3+ phosphors were synthesized by a liquid deposition method and characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance and fluorescent spectrophotometry. Gd2(MoO4)3 phosphor is of orthorhombic structure and AgGdMo2O8 phosphor is of tetragonal structure. Both of the phosphors have high absorption and excitation efficiency in near ultraviolet area, which emit mainly at about 615 nm with narrow bands. Comparing with Gd2(MoO4)3:10%Eu3+, AgGdMo2O8:10%Eu3+ red phosphor has small size and uniform distribution. Therefore, under 395 nm excitation, the emission intensity of AgGdMo2O8:10%Eu3+ around 615 nm is twice as much as that of Gd2(MoO4)3:Eu3+. Moreover, the color purity and luminous efficiency of the phosphors converted LEDs based on AgGdMo2O8:10%Eu3+ red phosphor and Ga(In)N chips, are also higher than that of Gd2(MoO4)3:Eu3+. The results demonstrated that AgGdMo2O8:Eu3+ is more suitable to be a red phosphor applying for white LEDs.

Notes

Acknowledgements

This work is supported by the National Nature Science Foundation of China (51602227), Scientific Foundation for Yong Teachers of Wuyi University (2016zk06), Science and Technology Projects of Guangdong Province (2015A090905010); Cultivation Fund of Outstanding Young Teachers in Higher Education of Guangdong Province (YQ2015161); Innovative Research Team in University of Guangdong (2015KCXTD027), Cooperative education platform of Guangdong province ([2016]31), The science and technology project of Jiangmen ([2017]307and [2017]149).

References

  1. 1.
    S.S. Liu, D.C. Zhu, J.S. Wang, C. Zhao, T. Han, The luminescence properties of Sr2–1.5x–1.5yP2O7:xDy3+, yCe3+ phosphor for near-UV-based white LEDs synthesized by a chemical co-precipitation method. Luminescence 32, 1582–1592 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, Y. Hu, H. Duan, Y. Fu, M. He, An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs. J. Alloy. Compd. 693, 315–325 (2017)CrossRefGoogle Scholar
  3. 3.
    W. Xu, D. Chen, S. Yuan, Y. Zhou, S. Li, Tuning excitation and emission of Mn4+ emitting center in Y3Al5O12 by cation substitution. Chem. Eng. J. 317, 854–861 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Yousif, S. Som, V. Kumar, H.C. Swart, Comparison and analysis of Eu3+ luminescence in Y3Al5O12 and Y3Ga5O12 hosts material for red lighting phosphor. Mater. Chem. Phys. 166, 167–175 (2015)CrossRefGoogle Scholar
  5. 5.
    L.C.V. Rodrigues, J. Hölsä, M. Lastusaari, M.C.F.C. Felinto, H.F. Brito, Defect to R3+ energy transfer: colour tuning of persistent luminescence in CdSiO3. J. Mater. Chem. C 166, 167–175 (2015)Google Scholar
  6. 6.
    K. Omri, A. Alyamani, L.E. Mir, Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl. Phys. A 124, 215 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Omri, L. El-Mir, Effect of manganese concentration on photoluminescence properties of Zn2SiO4:Mn nanophosphor material. Superlattices Microstruct. 70, 24–32 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Omri, O.M. Lemine, L.El Mir, Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 43, 6585–6591 (2017)CrossRefGoogle Scholar
  9. 9.
    Q.M. Phung, Z. Barandiarán, L. Seijo, Structural relaxation effects on the lowest 4f–5d transition of Ce3+ in garnets. Theor. Chem. Acc. 134, 37 (2015)CrossRefGoogle Scholar
  10. 10.
    V.V. Sinitsyn, B.S. Redkin, A.P. Kiselev, S.Z. Shmurak, N.N. Kolesnikov, V.V. Kveder, E.G. Ponyatovsky, “White” phosphor on the basis of Gd2(MoO4)3:Tm, Tb, Eu single crystal. Solid State Sci. 46, 80–83 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Wan, L. Cheng, J. Sun, H. Zhong, X. Li, W. Lu, Y. Tian, H. Lin, B. Chen, Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors. J. Alloy. Compd. 496, 331–334 (2010)CrossRefGoogle Scholar
  12. 12.
    B. Zhou, C.Q. E, Y.Y. Bu, L. Meng, X.H. Yan, X.F. Wang, Temperature-controlled down-conversion luminescence behavior of Eu3+-doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics. Luminescence 32, 195–200 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Sarkar, M. Chatti, V. Mahalingam, Highly luminescent colloidal Eu3+-doped KZnF3 nanoparticles for the selective and sensitive detection of Cu(II) ions. Chemistry 20, 3311–3316 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Thirumalai, R. Krishnan, I.B. Shameem Banu, R. Chandramohan, Controlled synthesis, formation mechanism and lumincence properties of novel 3-dimensional Gd2(MoO4)3:Eu3+ nanostructures. J. Mater. Sci. Mater. Electron. 24, 253–259 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Zhang, N. Liu, L. Xu, H. Jiao, Color-tunable up-conversion emission from Yb3+/Er3+/Tm3+ Tri-doped T-AgGd(W,Mo)2O8 phosphors. Mater. Res. Bull. 73, 171–178 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Cheng, H. Zhong, J. Sun, X. Zhang, Y. Peng, T. Yu, X. Zhao, Flux and concentration effect on Eu3+ doped Gd2(MoO4)3 phosphor. J. Rare Earths 26, 211–214 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Eichelbaum, K. Rademann, Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices. Adv. Func. Mater. 19, 2045–2052 (2009)CrossRefGoogle Scholar
  18. 18.
    V.A. Morozov, M.V. Raskina, B.I. Lazoryak, K.W. Meert, K. Korthout, P.F. Smet, D. Poelman, N. Gauquelin, J. Verbeeck, A.M. Abakumov, J. Hadermann, Crystal structure and luminescent properties of R2–xEux(MoO4)3 (R = Gd, Sm) red phosphors. Chem. Mater. 26, 7124–7136 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Reza Dousti, M.R. Sahar, M.S. Rohani, A. Samavati, Z.A. Mahraz, R.J. Amjad, A. Awang, R. Arifin, Nano-silver enhanced luminescence of Eu3+-doped lead tellurite glass. J. Mol. Struct. 65, 2731–2734 (2011)Google Scholar
  20. 20.
    C. Guzmán-Afonso, C. González-Silgo, M.E. Torres, N. Sabalisck, A.D. Lozano-Gorrín, J. González-Platas, E. Matesanz, Crystal structure and non-linear properties of A2(MoO4)3 (a = Eu, Gd, Tb, Dy and Ho). Mater. Lett. 65, 2731–2734 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Pan, X. Li, J. Zhang, L. Guan, H. Su, F. Teng, Synthesis and luminescent properties of NaZnPO4:Eu3+ red phosphors for white LEDs. Mater. Lett. 155, 106–108 (2015)CrossRefGoogle Scholar
  22. 22.
    K. Di, X. Li, X. Jing, S. Yao, J. Yan, Energy transfer and luminescence properties of KZnF3:Ln3+:Ln3+(Ln3+ = Eu3+, Tb3+, Eu3+/Tb3+, Eu3+/Tb3+/Tm3+) phosphors. J. Alloy. Compd. 661, 435–440 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Applied Physics and MaterialsWuyi UniversityJiangmenPeople’s Republic of China

Personalised recommendations