Microstructural evolution of Cu–Sn–Ni compounds in full intermetallic micro-joint and in situ micro-bending test

Abstract

This study focuses on the microstructural evolution process of Cu–Sn–Ni intermetallic compounds (IMCs) interlayer in the micro-joints, formed from the initial Ni/Sn (1.5 µm)/Cu structure through transient liquid phase (TLP) soldering. Under the bonding temperature of 240 °C, the micro-joints evolve into Ni/(Cu, Ni)6Sn5/(Cu, Ni)3Sn/Cu structure, where the interfacial reactions on Cu/Sn and Sn/Ni are suppressed by the atoms diffusing from the opposite side. The thickness of (Cu, Ni)3Sn layer on plated Cu layer still increases with the prolonged dwell time. When the bonding temperature was elevated to 290 °C, the phase transformation of (Cu, Ni)6Sn5 into (Cu, Ni)3Sn has been accelerated, thus the majority of IMCs interlayer is constituted with (Cu, Ni)3Sn. However, a small amount of Ni-rich (Cu, Ni)6Sn5 phases still remain near the Ni substrate and some of them close to the center-line of IMCs interlayer. The state between (Cu, Ni)6Sn5 and the adjacent (Cu, Ni)3Sn tends to reach equilibrium in Ni content based on the observation from Transmission Electron Microscope (TEM). In addition, the Cu–Sn–Ni IMCs micro-cantilevers were fabricated from these micro-joints using Focus Ion Beam (FIB) for the in situ micro-bending test, the results indicate a high ultimate tensile strength as well as the brittle fracture in the inter- and trans-granular modes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    B. Lee, H. Jeon, K.-W. Kwon, H.-J. Lee, Employment of a bi-layer of Ni(P)/Cu as a diffusion barrier in a Cu/Sn/Cu bonding structure for three-dimensional interconnects. Acta Mater. 61, 6736–6742 (2013)

    Article  Google Scholar 

  2. 2.

    J.G. Duh, Interface reactions and phase equilibrium between Ni/Cu under-bump metallization and eutectic SnPb flip-chip solder bumps. J. Mater. Res. 18, 935–940 (2003)

    Article  Google Scholar 

  3. 3.

    B. Lee, H. Jeon, S. Kim, K. Kwon, J.-W. Kim, H. Lee, Introduction of an electroless-plated Ni diffusion barrier in Cu/Sn/Cu bonding structures for 3D integration. J. Electrochem. Soc. 159, H85-H89 (2011)

    Google Scholar 

  4. 4.

    M.-H. Chan, Y.-C. Liao, C.-T. Lin, K.-W. Chuang, H.-N. Huang, C.-T. Yeh, W.-T. Tseng, J.-Y. Lai, Thermal cycling effect on intermetallic formation with various surface finish of micro bump interconnect for 3D package, IEEE 63rd Electronic Components and Technology Conference (ECTC), pp. 2163–2167 (2013)

  5. 5.

    R. Labie, W. Ruythooren, J. Van Humbeeck, Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions. Intermetallics 15, 396–403 (2007)

    Article  Google Scholar 

  6. 6.

    C. Liu, C. Ho, C. Peng, C.R. Kao, Effects of joining sequence on the interfacial reactions and substrate dissolution behaviors in Ni/Solder/Cu joints. J. Electron. Mater. 40, 1912–1920 (2011)

    Article  Google Scholar 

  7. 7.

    S.-W. Chen, S.-H. Wu, S.-W. Lee. Interfacial reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) systems. J. Electron. Mater. 32, 1188–1194 (2003)

    Article  Google Scholar 

  8. 8.

    V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, J. Kivilahti, Solid-state reactions between Cu(Ni) alloys and Sn. J. Electron. Mater. 36, 1355–1362 (2007)

    Article  Google Scholar 

  9. 9.

    J.-W. Yoon, S.-W. Kim, S.-B. Jung, Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging. J. Alloys Compd. 391, 82–89 (2005)

    Article  Google Scholar 

  10. 10.

    J.-W. Yoon, S.-W. Kim, S.-B. Jung, IMC morphology, interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate. J. Alloys Compd. 392, 247–252 (2005)

    Article  Google Scholar 

  11. 11.

    U. Schwingenschlögl, C. Di Paola, K. Nogita, C.M. Gourlay, The influence of Ni additions on the relative stability of η and η′Cu6Sn5. Appl. Phys. Lett. 96, 061908 (2010)

    Article  Google Scholar 

  12. 12.

    Y.Q. Wu, S.D. McDonald, J. Read, H. Huang, K. Nogita, Determination of the minimum Ni concentration to prevent the η to η4 + 1 polymorphic transformation of stoichiometric Cu6Sn5. Scripta Mater. 68, 595–598 (2013)

    Article  Google Scholar 

  13. 13.

    K. Nogita, D. Mu, S.D. McDonald, J. Read, Y.Q. Wu, Effect of Ni on phase stability and thermal expansion of Cu6–xNixSn5 (x = 0, 0.5, 1, 1.5 and 2). Intermetallics 26, 78–85 (2012)

    Article  Google Scholar 

  14. 14.

    D. Mu, H. Huang, S.D. McDonald, J. Read, K. Nogita, Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu, Ni)6Sn5 on diverse crystal planes. Mater. Sci. Eng. A 566, 126–133 (2013)

    Article  Google Scholar 

  15. 15.

    N. Bosco, F. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system. Acta Mater. 52, 2965–2972 (2004)

    Article  Google Scholar 

  16. 16.

    B.S. Lee, S.K. Hyun, J.W. Yoon, Cu–Sn and Ni–Sn transient liquid phase bonding for die-attach technology applications in high-temperature power electronics packaging. J. Mater. Sci.: Mater. Electron. 28, 7827–7833 (2017)

    Google Scholar 

  17. 17.

    F. Gao, J. Qu, Calculating the diffusivity of Cu and Sn in Cu3Sn intermetallic by molecular dynamics simulations. Mater. Lett. 73, 92–94 (2012)

    Article  Google Scholar 

  18. 18.

    J.F. Li, P.A. Agyakwa, C.M. Johnson, Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater. 59, 1198–1211 (2011)

    Article  Google Scholar 

  19. 19.

    T.-T. Luu, A. Duan, K. Aasmundtveit, N. Hoivik. Optimized Cu–Sn wafer-level bonding using intermetallic phase characterization. J. Electron. Mater. 42, 3582–3592 (2013)

    Article  Google Scholar 

  20. 20.

    L. Mo, F. Wu, C. Liu. Growth kinetics of IMCs in Cu–Sn intermetallic joints during isothermal soldering process. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), pp. 1854–1858 (2015)

  21. 21.

    H. Yu, V. Vuorinen, J.K. Kivilahti, Solder/substrate interfacial reactions in the Sn–Cu–Ni interconnection system. J. Electron. Mater. 36, 136–146 (2007)

    Article  Google Scholar 

  22. 22.

    S. Fürtauer, D. Li, D. Cupid, H. Flandorfer. The Cu–Sn phase diagram. Part I: new experimental results. Intermetallics 34, 142–147 (2013)

    Article  Google Scholar 

  23. 23.

    C. Schmetterer, H. Flandorfer, K.W. Richter, U. Saeed, M. Kauffman, P. Roussel, H. Ipser. A new investigation of the system Ni–Sn. Intermetallics 15, 869–884 (2007)

    Article  Google Scholar 

  24. 24.

    H.-C. Cheng, C.-F. Yu, W.-H. Chen. Strain- and strain-rate-dependent mechanical properties and behaviors of Cu3Sn compound using molecular dynamics simulation. J. Mater. Sci. 47, 3103–3114 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China [NSFC No. 61574068] and the Fundamental Research Funds for the Central Universities [No. 2016JCTD112]. The author L Mo would like to acknowledge the support from the joint research degree program between Loughborough University and Huazhong University of Science and Technology. All the authors appreciate the technical help from the Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) and Hysitron Applied Research Center in China (HARCC) in Xi’an Jiaotong University for the in situ mechanical testing.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fengshun Wu or Changqing Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mo, L., Guo, C., Zhou, Z. et al. Microstructural evolution of Cu–Sn–Ni compounds in full intermetallic micro-joint and in situ micro-bending test. J Mater Sci: Mater Electron 29, 11920–11929 (2018). https://doi.org/10.1007/s10854-018-9293-8

Download citation