NH3 gas sensing performance of ternary TiO2/SnO2/WO3 hybrid nanostructures prepared by ultrasonic-assisted sol–gel method

  • S. M. Patil
  • S. A. Vanalakar
  • A. G. Dhodamani
  • S. P. Deshmukh
  • V. L. Patil
  • P. S. Patil
  • S. D. Delekar
Article
  • 19 Downloads

Abstract

Ternary TiO2/SnO2/WO3 hybrid nanostructures were prepared by using ultra-sonic assisted sol–gel wet impregnation method, and investigated for NH3 gas sensing applications. The physicochemical properties of the prepared samples were investigated using X-ray diffraction spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, ultra-violet-visible spectroscopy, and X-ray photoelectron spectroscopy. The results showed threefold increase in NH3 gas sensing performance with high selectivity, high response–recovery time at operating temperature 200 °C for ternary TSW-1 NC as compared to its bare, binary and other ternary counterparts. Due to mesoporous morphology of ternary TSW-1 NC and better interconnectivity between metal oxide NPs; NH3 molecule adsorbed efficiently on the surface as well as in interior part of lattice matrix, which resulted into a good sensing response.

Notes

Acknowledgements

Author (SMP) is thankful to University Grants Commission, New Delhi, India for financial assistance under the award of UGC-FIP [F. No. 36-40/14 (WRO)] which is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10854_2018_9283_MOESM1_ESM.doc (872 kb)
Supplementary material 1 (DOC 871 KB)

References

  1. 1.
    C. Schultealbert, T. Baur, A. Schütze, S. Böttcher, T. Sauerwald, Sens. Actuators B 239, 390–396 (2017)CrossRefGoogle Scholar
  2. 2.
    V.L. Patil, S.A. Vanalakar, A.S. Kamble, S.S. Shendage, J.H. Kim, P.S. Patil, RSC Adv. 6, 90916–90922 (2016)CrossRefGoogle Scholar
  3. 3.
    S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, RSC Adv. 4, 27998–28004 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Batzill, U. Diebold, Phys. Chem. Chem. Phys. 9, 2307–2318 (2007)CrossRefGoogle Scholar
  5. 5.
    S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim, P.S. Patil, Sens. Actuators B 240, 426–433 (2017)CrossRefGoogle Scholar
  6. 6.
    X. Liu, N. Chen, B. Han, X. Xiao, G. Chen, I. Djerdj, Y. Wang, Nanoscale 7, 14872–14880 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Li, N. Chen, S. Lin, J. Wang, J. Zhang, Sens. Actuators B 209, 729–734 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Anantachaisilp, S.M. Smith, C. Ton-That, T. Osotchan, A.R. .Moon, M.R. Phillips, J. Phys. Chem. C 118, 27150–27156 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Li, D. Zhang, B. Lei, S. Han, X. Liu, C. Zhou, J. Phys. Chem. B 107, 12451–12455 (2003)CrossRefGoogle Scholar
  10. 10.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, J. Taiwan Inst. Chem. Eng. 85, 273–281 (2018)CrossRefGoogle Scholar
  11. 11.
    S.M. Patil, S.P. Deshmukh, A.G. Dhodamani, K.V. Morem, S.D. Delekar, Curr. Org. Chem. 21, 821–833 (2017)CrossRefGoogle Scholar
  12. 12.
    R.P. Barkul, M.K. Patil, S.M. Patil, V.B. Shevale, S.D. Delekar, J. Photochem. Photobiol. A 349, 138–147 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, J. Mater. Sci. Mater. Electron 29, 6183–6187 (2018)CrossRefGoogle Scholar
  14. 14.
    M.A. Mahadik, G.W. An, S. David, S.H. Choi, M. Cho, J.S. Jang, Appl. Surf. Sci. 426, 833–843 (2017)CrossRefGoogle Scholar
  15. 15.
    S.D. Delekar, A.G. Dhodamani, K.V. More, T.D. Dongale, R.K. Kamat, S.F. Acquah, N.S. Dalal, D.K. Panda, ACS Omega 3, 2743–2756 (2018)CrossRefGoogle Scholar
  16. 16.
    M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, RSC Adv. 4, 11012–11022 (2014)CrossRefGoogle Scholar
  17. 17.
    I. Simon, N. Bârsan, M. Bauer, U. Weimar, Sens. Actuators B 73, 1–26 (2001)CrossRefGoogle Scholar
  18. 18.
    D. Biskupski, B. Herbig, G. Schottner, R. Moos, Sens. Actuators B 153, 329–334 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Timmer, W. Olthuis, A. Van Den Berg, Sens. Actuators B 107, 666–677 (2005)CrossRefGoogle Scholar
  20. 20.
    V. Srivastava, K. Jain, RSC Adv. 5, 56993–56997 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, J. Mater. Sci. Mater. Electron 29, 3808–3816 (2018)CrossRefGoogle Scholar
  23. 23.
    S. David, M.A. Mahadik, H.S. Chung, J.H. Ryu, J.S. Jang, ACS Sustain. Chem. Eng. 5, 7537–7548 (2017)CrossRefGoogle Scholar
  24. 24.
    A. Kusior, M. Radecka, K. Zakrzewska, A. Reszka, B.J. Kowalski, Sens. Actuators B 189, 251–259 (2013)CrossRefGoogle Scholar
  25. 25.
    V.K. Tomer, S. Duhan, J. Mater. Chem. A 4, 1033–1043 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Jana, A. Mondal, ACS Appl. Mater. Interfaces 6, 15832–15840 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Zhu, X. Su, C. Yang, X. Gao, F. Xiao, J. Wang, J. Mater. Chem. 22, 13914–13917 (2012)CrossRefGoogle Scholar
  28. 28.
    Y.M. Hunge, A.A. Yadav, M.A. Mahadik, R.N. Bulakhe, J.J. Shim, V.L. Mathe, C.H. Bhosale, Opt. Mater. 76, 260–270 (2018)CrossRefGoogle Scholar
  29. 29.
    M.M. Arafat, A.S.M.A. Haseeb, S.A. Akbar, M.Z. Quadir, Sens. Actuators B 238, 972–984 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Barreca, E. Comini, A.P. Ferrucci, A. Gasparotto, C. Maccato, C. Maragno, G. Sberveglieri, E. Tondello, Chem. Mater. 19, 5642–5649 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Lehnen, M. Valldor, D. Nižňanský, S. Mathur, J. Mater. Chem. A 2, 1862–1868 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Liu, Z. Wang, Y. Zhang, Z. Dong, T. Zhang, RSC Adv. 5, 91760–91765 (2015)CrossRefGoogle Scholar
  33. 33.
    P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, N. Pinna, Angew. Chem., Int. Ed. 51, 11053–11057 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Chitra, K. Uthayarani, N. Rajasekaran, N. Neelakandeswari, E.K. Girija, D.P. Padiyan, G. Mangamma, RSC Adv. 6, 111526–111538 (2016)CrossRefGoogle Scholar
  35. 35.
    J.P. Chen, R.T. Yang, Appl. Catal., A 80, 135–148 (1992)CrossRefGoogle Scholar
  36. 36.
    S.M. Patil, A.G. Dhodamani, S.A. Vanalakar, S.P. Deshmukh, S.D. Delekar, J. Phys. Chem. Solids 115, 127–136 (2018)CrossRefGoogle Scholar
  37. 37.
    J.R. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov, L. Bergström, S. Parola, A. Pawlicka, Langmuir 30, 10487–10492 (2014)CrossRefGoogle Scholar
  38. 38.
    P.S. Shinde, M.A. Mahadik, S.Y. Lee, J. Ryu, S. H.Choi, J.S. Jang, Chem. Eng. J. 320, 81–92 (2017)CrossRefGoogle Scholar
  39. 39.
    T. Ali, Y.M. Hunge, A. Venkatraman, J. Mater. Sci. Mater. Electron. 29(2), 1209–1215 (2018)CrossRefGoogle Scholar
  40. 40.
    L. Jing, W. Zhou, G. Tian, H. Fu, Chem. Soc. Rev. 42, 9509–9549 (2013)CrossRefGoogle Scholar
  41. 41.
    T. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Chem. Soc. Rev. 42, 4036–4053 (2013)CrossRefGoogle Scholar
  42. 42.
    H.I. Kim, J. Kim, W. Kim. W. Choi, J. Phys. Chem. C 115, 9797–9805 (2011)CrossRefGoogle Scholar
  43. 43.
    G.G. Guillén, S. Shaji, M.M. Palma, D. Avellaneda, G.A. Castillo, T.D. Roy, D.G. Gutiérrez, B. Krishnan, Appl. Surf. Sci. 405, 183–194 (2017)CrossRefGoogle Scholar
  44. 44.
    J. Russat, Surf. Interface Anal. 11, 414–420 (1988)CrossRefGoogle Scholar
  45. 45.
    S. Ghosh, M. Saha, S.K. De, Nanoscale 6, 7039–7051 (2014)CrossRefGoogle Scholar
  46. 46.
    F. Wang, Y. Li, Z. Cheng, K. Xu, X. Zhan, Z. Wang, J. He, Phys. Chem. Chem. Phys. 16, 12214–12220 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Sun, Q. Zhao, C. Du, Z. Liu, RSC Adv. 5, 22740–22752 (2015)CrossRefGoogle Scholar
  48. 48.
    M.R. Bayati, S. Joshi, R.J. Narayan, J. Narayan, J. Mater. Res. 28, 1669–1679 (2013)CrossRefGoogle Scholar
  49. 49.
    M.N. Ghazzal, N. Chaoui, M. Genet, E.M. Gaigneaux, D. Robert, Thin Solid Films 520, 1147–1154 (2011)CrossRefGoogle Scholar
  50. 50.
    S. Delekar, K. More, A. Dhodamani, S. Patil, T. Dongale, K. Maity, N. Dalal, D.K. Panda, Mater. Charact. 139, 337–346 (2018)CrossRefGoogle Scholar
  51. 51.
    L. Ran, D. Zhao, X. Gao, L. Yin, Cryst. Eng. Comm. 17, 4225–4237 (2015)CrossRefGoogle Scholar
  52. 52.
    L. Weinhardt, M. Blum, M. Bär, C. Heske, B. Cole, B. Marsen, E.L. Miller, J. Phys. Chem. C 112, 3078–3082 (2008)CrossRefGoogle Scholar
  53. 53.
    L. Yin, D. Chen, M. Hu, H. Shi, D. Yang, B. Fan, G. Shao, R. Zhang, G. Shao, J. Mater. Chem. A 2, 18867–18874 (2014)CrossRefGoogle Scholar
  54. 54.
    T.A. Miller, S.D. Bakrania, C. Perez, M.S. Wooldridge, J. Mater. Res. 20, 2977–2987 (2005)CrossRefGoogle Scholar
  55. 55.
    S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. Hunge, P.K. Chougule, K.Y. Rajpure, C.H. Bhosale, J. Mater. Sci. Mater. Electron. 27, 3799–3811 (2016)CrossRefGoogle Scholar
  56. 56.
    L. Xu, M.L. Yin, S.F. Liu, Sci. Rep. 4, 1–7 (2014)Google Scholar
  57. 57.
    I. Jimenez, M.A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Cornet, J.R. Morante, J. Mater. Chem. 14, 2412–2420 (2004)CrossRefGoogle Scholar
  58. 58.
    M. De Boer, H.M. Huisman, R.J.M. Mos, R.G. Leliveld, A.J. Van Dillen, J.W. Geus, Catal. Today 17, 189–200 (1993)CrossRefGoogle Scholar
  59. 59.
    H. Ogawa, M. Nishikawa, A. Abe, J. Appl. Phys. 53, 4448–4455 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. M. Patil
    • 1
    • 2
  • S. A. Vanalakar
    • 2
    • 4
  • A. G. Dhodamani
    • 1
  • S. P. Deshmukh
    • 1
    • 3
  • V. L. Patil
    • 4
  • P. S. Patil
    • 4
  • S. D. Delekar
    • 1
  1. 1.Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Karmaveer Hire Arts, Science, Commerce and Education CollegeKolhapurIndia
  3. 3.D. B. F. Dayanand College of Arts and ScienceSolapurIndia
  4. 4.Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations