The effect of capping agents on the structural and magnetic properties of cobalt ferrite nanoparticles

Abstract

Microwave-assisted co-precipitation method was adopted to analyze the effect of polyethylene glycol (PEG) and urea concentrations on the properties of cobalt ferrite nanoparticles (NPs). The average crystallite size of single phase cubic spinel cobalt ferrite NPs was controlled within 10–14 nm with the effect of PEG, urea and the combination of them. The transmission electron micrographs revealed that the morphology of cobalt ferrites was not significantly influenced by the different concentration of capping agents but almost uniform morphology with nearly narrow size distribution was obtained. The interaction of PEG and urea molecules on the surface of nanoparticles was mediated through –OH hydroxyl group affected the crystal growth rate. The possible interaction mechanism was proposed with the help of IR vibrational spectra. All the samples exhibited ferromagnetism at room temperature and it was found that the capping agents showed an effect on the magnetic properties. The maximum saturation magnetization of 58 emu/g was achieved when the urea of 60 mg was used and the maximum coercivity of 311 Oe was attained when the mixture of PEG (40 mg) and urea (20 mg) were used. Ultrafine and hydrophilic cobalt ferrite NPs that showed appreciable magnetic properties obtained in the present experimental procedure would be of great interest in various biomedical applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Sun, A. Zhu, Q. Zhang, Q. Liu, J. Magn. Magn. Mater. 369, 49 (2014)

    Article  Google Scholar 

  2. 2.

    J. Yang, P. Zou, L. Yang, J. Cao, Y. Sun, D. Han, S. Yang, Z. Wang, G. Chen, B. Wang, X. Kong, Appl. Surf. Sci. 303, 425 (2014)

    Article  Google Scholar 

  3. 3.

    P.L. Andrade, V.A.J. Silva, J.C. Maciel, M.M. Santillan, N.O. Moreno, L. De Los Santos Valladares, A. Bustamante, S.M.B. Pereira, M.P.C. Silva, J. Albino Aguiar, Hyperfine Interact. 224, 217 (2014)

    Article  Google Scholar 

  4. 4.

    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J. Magn. Magn. Mater. 444, 297 (2017)

    Article  Google Scholar 

  5. 5.

    S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, P. Molinie, M. Danot, J. Mater. Chem. 11, 186 (2001)

    Article  Google Scholar 

  6. 6.

    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, Ceram. Int. 43, 5599 (2017)

    Article  Google Scholar 

  7. 7.

    F.J. Pedrosa, J. Rial, K.M. Golasinski, M. Rodr, RSC Adv. 6, 87282 (2016)

    Article  Google Scholar 

  8. 8.

    I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)

    Article  Google Scholar 

  9. 9.

    S. Komarneni, M.C. D’Arrigo, C. Leonelli, G.C. Pellacani, H. Katsuki, J. Am. Ceram. Soc. 81, 3041 (2005)

    Article  Google Scholar 

  10. 10.

    J.A. Gerbec, D. Magana, A. Washington, G.F. Strouse, J. Am. Chem. Soc. 127, 15791 (2005)

    Article  Google Scholar 

  11. 11.

    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, Mater. Res. Express 5, 026102 (2018)

    Article  Google Scholar 

  12. 12.

    S. Li, G.W. Qin, T.W. Pei, Y. Ren, Y. Zhang, C. Esling, L. Zuo, J. Am. Ceram. Soc. 92, 631 (2009)

    Article  Google Scholar 

  13. 13.

    A.S. Nikolić, N. Jović, J. Rogan, A. Kremenović, M. Ristić, A. Meden, B. Antić, Ceram. Int. 39, 6681 (2013)

    Article  Google Scholar 

  14. 14.

    A. Abbasi, H. Khojasteh, M. Hamadanian, J. Mater. Sci. Mater. Electron. 27, 4972 (2016)

    Article  Google Scholar 

  15. 15.

    S. Jovanović, M. Spreitzer, M. Tramšek, Z. Trontelj, D. Suvorov, J. Phys. Chem. C 118, 13844 (2014)

    Article  Google Scholar 

  16. 16.

    S. Esir, R. Topkaya, A. Baykal, Ö Akman, M.S. Toprak, J. Inorg. Organomet. Polym. Mater. 24, 424 (2014)

    Article  Google Scholar 

  17. 17.

    R. Talebi, J. Mater. Sci. Mater. Electron. 28, 9749 (2017)

    Article  Google Scholar 

  18. 18.

    K. Hedayati, S. Azarakhsh, D. Ghanbari, J. Nanostruct. 6, 127 (2016)

    Google Scholar 

  19. 19.

    T. Yu, Z. Wu, W.-S. Kim, RSC Adv. 4, 37516 (2014)

    Article  Google Scholar 

  20. 20.

    T. Prabhakaran, R.V. Mangalaraja, J.C. Denardin, J.A. Jiménez, J. Alloys Compd. 716, 171 (2017)

    Article  Google Scholar 

  21. 21.

    M.R. Parra, F.Z. Haque, Optik 126, 1562 (2015)

    Article  Google Scholar 

  22. 22.

    M. Sudha, S. Senthilkumar, R. Hariharan, A. Suganthi, M. Rajarajan, J. Sol-Gel. Sci. Technol. 65, 301 (2013)

    Article  Google Scholar 

  23. 23.

    M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, J. Magn. Magn. Mater. 322, 383 (2010)

    Article  Google Scholar 

  24. 24.

    N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Nano Lett. 4, 383 (2004)

    Article  Google Scholar 

  25. 25.

    M. Chithra, C.N. Anumol, B. Sahu, S.C. Sahoo, J. Magn. Magn. Mater. 424, 174 (2017)

    Article  Google Scholar 

  26. 26.

    C. Zhang, M.R. Salick, T.M. Cordie, T. Ellingham, Y. Dan, L.-S. Turng, Mater. Sci. Eng. C 49, 463 (2015)

    Article  Google Scholar 

  27. 27.

    R. Keuleers, H.O. Desseyn, B. Rousseau, C. Van Alsenoy, J. Phys. Chem. A 103, 4621 (1999)

    Article  Google Scholar 

  28. 28.

    F. Gözüak, Y. Köseoǧlu, A. Baykal, H. Kavas, J. Magn. Magn. Mater. 321, 2170 (2009)

    Article  Google Scholar 

  29. 29.

    S.M. Ansari, R.D. Bhor, K.R. Pai, S. Mazumder, D. Sen, Y.D. Kolekar, C.V. Ramana, ACS Biomater. Sci. Eng. 2, 2139 (2016)

    Article  Google Scholar 

  30. 30.

    B.N. Hao, Y.X. Guo, Y.D. Liu, L.-M. Wang, H.J. Choi, J. Mater. Chem. C 4, 7875 (2016)

    Article  Google Scholar 

  31. 31.

    G. Bertotti, in Hysteresis in Magnetism, ed. by G. Bertotti (Academic Press, San Diego, 1998), pp. 297–346

    Google Scholar 

  32. 32.

    E.P. Wohlfarth, J. Appl. Phys. 29, 595 (1958)

    Article  Google Scholar 

  33. 33.

    T. Prabhakaran, J. Hemalatha, Ceram. Int. 42, (2016)

  34. 34.

    Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Polyhedron 28, 2887 (2009)

    Article  Google Scholar 

  35. 35.

    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133 (2011)

    Article  Google Scholar 

  36. 36.

    M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magn. Magn. Mater. 371, 43 (2014)

    Article  Google Scholar 

  37. 37.

    Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, J. Magn. Magn. Mater. 323, 2748 (2011)

    Article  Google Scholar 

  38. 38.

    L. Cui, P. Guo, G. Zhang, Q. Li, R. Wang, M. Zhou, L. Ran, X.S. Zhao, Colloids Surf. A 423, 170 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FONDECYT Postdoctoral Research Project No.: 3160170, FONDECYT Project No.: 1140195, and CONICYT BASAL CEDENNA FB0807, Government of Chile.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to T. Prabhakaran or R. V. Mangalaraja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prabhakaran, T., Mangalaraja, R.V., Denardin, J.C. et al. The effect of capping agents on the structural and magnetic properties of cobalt ferrite nanoparticles. J Mater Sci: Mater Electron 29, 11774–11782 (2018). https://doi.org/10.1007/s10854-018-9276-9

Download citation