Skip to main content

Advertisement

Log in

Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2/Co3O4 (BTMO) with reduced graphene oxide (rGO) nanocomposite were synthesized by co-precipitation method to determine its electrochemical properties for the betterment of Supercapacitor applications. The XRD pattern of BTMO/rGO nanocomposite shows tetragonal rutile and spinal cubic structure. The XRD peak of BTMO/rGO nanocomposite is comparatively broader than the BTMO nanocomposite and bare nanoparticles due to the presence of high surface area rGO. From the SEM image it is observed that the BTMO nanocomposite has comparatively larger particles than the bare nanoparticles and BTMO/rGO nanocomposites. Hence, the BTMO/rGO nanocomposite has alteration in surface to volume ratio and improved electron conductivity were observed with increased integral area and current such as 2.5117 × 10−4 A/s and 3.1686 × 10−4 A respectively in CV behavior, when it is compared to BTMO nanocomposite and bare nanoparticles. The BTMO/rGO nanocomposite also has an increased specific capacitance value of 317.2 F/g at 1 A/g. The increased specific capacitance value of BTMO/rGO nanocomposites are mainly due to the synergistic effect between SnO2/Co3O4 and rGO. Hence, it may be responsible for the improved electron conductivity, due to the free diffusion pathway for the fast ion movement and also it has easily ion accessibility nature to the storage sites makes the materials with both the electric double layer capacitance and pseudocapacitance behavior. Hence, BTMO/rGO nanocomposite would be a promising candidate material for energy storage supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.B. Rakhi, H.N. Alshareef, J. Power Sources 196, 8858–8865 (2011)

    Article  Google Scholar 

  2. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)

    Article  Google Scholar 

  3. W. Chen, D. Ghosh, S. Chen, J. Mater. Sci. 43, 5291–5299 (2008)

    Article  Google Scholar 

  4. Z. Qinqin, M. Lisha, Z. Qiang, W. Chenggang, X. Xijin, J. Nanomater. (2015). https://doi.org/10.1155/2015/850147

    Google Scholar 

  5. L. Tan, L. Wang, Y. Wang, J. Nanomater. 2011, 1–10 (2011)

    Article  Google Scholar 

  6. Q. Gao, H. Jiang, M. Li, P. Lu, X. Lai, X. Li, Y. Liu, C. Song, G. Han, Ceram. Int. 40, 2557–2564 (2014)

    Article  Google Scholar 

  7. M.K. Roković, G. Ljubek, M. Žic, J. Popović, Croat. Chem. Acta 90(2), 289–295 (2017)

    Google Scholar 

  8. X. Meng, M. Zhou, X. Li, J. Yao, F. Liu, P. Xiao, Y. Zhang, H. He, Electrochem. Acta 109, 20–26 (2013)

    Article  Google Scholar 

  9. N. Wan, X. Lu, Y. Wang, Sci. Rep. 6, 18978 (2015)

    Article  Google Scholar 

  10. B. Zhao, S.Y. Huang, T. Wang, K. Zhang, M.M.F. Yuen, J.B. Xu, X.Z. Fu, R. Sun, C.P. Wong, J. Power Sources 298, 83–91 (2015)

    Article  Google Scholar 

  11. X. Zhua, Y. Zhub, S. Murali, M.D. Stoller, R.S. Ruoff, J. Power Sources 196, 6473–6477 (2011)

    Article  Google Scholar 

  12. S. Ren, Y. Yang, M. Xu, H. Cai, C. Hao, X. Wang, Colloids Surf. A 444, 26–32 (2014)

    Article  Google Scholar 

  13. G. Ali, J.H. Lee, S.H. Oh, H.G. Jung, K.Y. Chung, Nano. Energy 42, 106–114 (2017)

    Article  Google Scholar 

  14. S.R. Srither, A. Karthik, S. Arunmetha, D. Murugasen, V. Rajendran, Mater. Chem. Phys. 183, 375–382 (2016)

    Article  Google Scholar 

  15. Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, J. Power Sources 195, 1757–1760 (2010)

    Article  Google Scholar 

  16. P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, J. Alloys Compd. 509, 2567–2571 (2011)

    Article  Google Scholar 

  17. M.S. Wu, M.J. Wang, Chem. Commun. 46, 6968–6970 (2010)

    Article  Google Scholar 

  18. J. Jiang, F. Wei, G. Yu, Y. Sui, J. Nanomater. 2015, 1–6 (2015)

    Google Scholar 

  19. M. Kumar, A. Subramani, K. Balakrishnan, Electrochim. Acta 149, 152–158 (2014)

    Article  Google Scholar 

  20. D. Zhang, F. Li, A. Chen, Q. Xie, M.Y. Wang, X. Zhang, J. Gong, G. Han, A. Ying, Z. Tong, Solid State Sci. 13, 1221–1225 (2011)

    Article  Google Scholar 

  21. S.K. Meher, G.R. Rao, J. Phys. Chem. 115, 15646–15654 (2011)

    Google Scholar 

  22. L.J. Xie, J.F. Wu, C.M. Chen, C.M. Zhang, J.L. Wang, Q.Q. Kong, C.X. Lv, K.X. Li, L. Wan, G.H. Sun, J. Power Sources 242, 148–156 (2013)

    Article  Google Scholar 

  23. M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang, Nanotechnology 20, 175602 (2009)

    Article  Google Scholar 

  24. D. Ghosh, J. Lim, R. Narayan, O.S. Kim, Appl. Mater. Interfaces 8, 22253–22260 (2016)

    Article  Google Scholar 

  25. P. He, Z. Xie, Y. Chen, F. Dong, H. Liu, Mater. Chem. Phys. 137, 576–579 (2012)

    Article  Google Scholar 

  26. W.S. Kim, Y. Hwa, H.C. Kim, J.H. Choi, H.J. Sohn, S.H. Hong, Nano Res. 7, 1128–1136 (2014)

    Article  Google Scholar 

  27. G. Ali, J.H. Lee, B.W. Cho, K.W. Nam, D.A.W. .Chang, S.H. Oh, K.Y. Chung, Electrochim. Acta 191, 307–316 (2016)

    Article  Google Scholar 

  28. G. Ali, A. Mehmood, H.Y. Ha, J. Kim, K.Y. Chung, Sci. Rep. 7, 40910 (2017)

    Article  Google Scholar 

  29. A.K. Geim, K.S. Novoselow, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  30. J. Gao, C. Liu, L. Miao, X. Wang, Y. Chen, J. Electron. Mater. 45, 1290–1295 (2016)

    Article  Google Scholar 

  31. M. Aziz, S.S. Abbas, W.R.W. Baharom, W.Z.W. Mahmud, Mater. Lett. 74, 62–64 (2012)

    Article  Google Scholar 

  32. B.G.S. Raj, J.J. Wu, A.M. Asiri, S. Anandan, RSC Adv. 00, 1–3 (2013)

    Google Scholar 

  33. E. Fazio, F. Neri, S. Savasta, Phys. Rev. B 85, 195423 (2012)

    Article  Google Scholar 

  34. M. Rashad, M. Rüsing, G. Berth, K. Lischka, A. Pawlis, J. Nanomater. (2013). https://doi.org/10.1155/2013/714853

    Google Scholar 

  35. I. Lorite, J.J. Romero, J.F. Fernández, J. Raman Spectrosc. 43, 1443–1448 (2012)

    Article  Google Scholar 

  36. Z.J. Li, T.X. Chang, G.Q. Yun, Y. Jia, Power Technol. 224, 306–310 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author S. Nagarani, acknowledge the research scholars from the Department of Physics, Department of Medical Physics, Department of Chemistry, Centre for Nanoscience and technology of Anna University, Chennai-25 for them kind support. The author whole-heartedly acknowledge the Director of Centre for Research, Professor R. Jayavel for his kind support to extend the lab facility to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sasikala.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 583 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarani, S., Sasikala, G., Satheesh, K. et al. Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications. J Mater Sci: Mater Electron 29, 11738–11748 (2018). https://doi.org/10.1007/s10854-018-9272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9272-0

Navigation