Morphological transformations induced by Co impurity in ZnO nanostructures prepared by rf-sputtering and their physical properties

Article
  • 2 Downloads

Abstract

Growth of uniform and vertically well aligned nanorods is a difficult process and becomes more complicated in case of ZnO nanorods on silicon (Si) substrate due to thermal instability of the Si substrate and large lattice mismatch (~ 40%) between the substrate and the ZnO nanorods array. Growth of ZnO nanorods assisted by metal ion via rf-sputtering is a good technique; however, it needs many parameters to be controlled for desired growth and morphology of nanostructures. In this work, we report the morphological transformations of ZnO nanostructured thin film by simply controlling the concentration of Cobalt (Co) impurity in sputtering target. With the introduction of Co ions in ZnO matrix, the initial coalescence grain structure (pyramidal morphology) changes into columnar grains and as the concentration of Co ions increases further, a highly oriented ZnO nanorods array is obtained. The possible mechanism with the help of schematic diagram is also proposed for the morphological transformation of ZnO nanostructures. The vertically aligned nanorods show good optical properties as well as robust ferromagnetism at room temperatures. It has also been observed that with the dopant conc. increasing there was a significant decrease in the band gap energy. The structure and morphology of rf-sputtered nanostructured thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. Interestingly, with Co conc. increasing in ZnO matrix results in decreasing LO modes in Raman spectroscopy. It can have strong influence on the magnetic properties of the material. The good optical and strong ferromagnetic properties of the ZnO nanorods, suggest its possible applications in the fields of lasers, spintronics and medical applications.

Notes

Acknowledgements

The financial support and experimental facility such as rf-sputtering by Inter University Accelerator Centre, Delhi, under the project (UFR#54306) and University of Delhi through R & D Grants (Project # RC/2015/9677) are gratefully acknowledged. We also acknowledge Indian Institute of Technology, Delhi for utilization of SQUID National Facility. We would like to thank Dr. Saif A. Khan (IUAC-Delhi) for SEM analysis. One of the authors (Sudhisht Kumar) gratefully acknowledges the Research Fellowship for the work from IUAC-Delhi.

References

  1. 1.
    Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829–R858 (2004).  https://doi.org/10.1088/0953-8984/16/25/R01 CrossRefGoogle Scholar
  2. 2.
    X.M. Zhang, M.Y. Lu, Y. Zhang, L.J. Chen, Z.L. Wang, Fabrication of a high-brightness blue-light-emitting diode using a ZnO-Nanowire array grown on p-GaN thin film. Adv. Mater. 21, 2767–2770 (2009).  https://doi.org/10.1002/adma.200802686 CrossRefGoogle Scholar
  3. 3.
    J. Cui, U. Gibson, Thermal modification of magnetism in cobalt-doped ZnO nanowires grown at low temperatures. Phys. Rev. B 74, 1–8 (2006).  https://doi.org/10.1103/PhysRevB.74.045416 CrossRefGoogle Scholar
  4. 4.
    B. Deka Boruah, A. Misra, Effect of magnetic field on photoresponse of cobalt integrated zinc oxide nanorods. ACS Appl. Mater. Interfaces 8, 4771–4780 (2016).  https://doi.org/10.1021/acsami.5b11387 CrossRefGoogle Scholar
  5. 5.
    K.C. Barick, M. Aslam, V.P. Dravid, D. Bahadur, Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 112, 15163–15170 (2008).  https://doi.org/10.1021/jp802361r CrossRefGoogle Scholar
  6. 6.
    P. Hu, X. Zhang, N. Han, W. Xiang, Y. Cao, F. Yuan, Solution-controlled self-assembly of ZnO nanorods into hollow microspheres. Cryst. Growth Des. 11, 1520–1526 (2011).  https://doi.org/10.1021/cg101429f CrossRefGoogle Scholar
  7. 7.
    C. Pacholski, A. Kornowski, H. Weller, Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 41 (2002) 1188–1191.  https://doi.org/10.1002/1521-3773(20020402)41:7%3C1188::AID-ANIE1188%3E3.0.CO;2-5.CrossRefGoogle Scholar
  8. 8.
    J. Xu, G. Hou, T. Mori, H. Li, Y. Wang, Y. Chang, Y. Luo, B. Yu, Y. Ma, T. Zhai, Excellent field-emission performances of neodymium hexaboride (NdB 6) nanoneedles with ultra-low work functions. Adv. Funct. Mater. 23, 5038–5048 (2013).  https://doi.org/10.1002/adfm201301980 CrossRefGoogle Scholar
  9. 9.
    C. Li, W. Guo, Y. Kong, H. Gao, First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures. Phys. Rev. B 76, 1–8 (2007).  https://doi.org/10.1103/PhysRevB.76.035322 Google Scholar
  10. 10.
    D.C. Look, R.L. Jones, J.R. Sizelove, N.Y. Garces, N.C. Giles, L.E. Halliburt, The path to ZnO devices: donor and acceptor dynamics. Phys. Status Solidi 195, 171–177 (2003).  https://doi.org/10.1002/pssa.200306274 CrossRefGoogle Scholar
  11. 11.
    M.H. Zhao, Z.L. Wang, S.X. Mao, Piezoelectric characterization individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett. 4, 587–590 (2004).  https://doi.org/10.1021/nl035198a CrossRefGoogle Scholar
  12. 12.
    J. Archana, M. Navaneethan, Y. Hayakawa, Morphological transformation of ZnO nanoparticle to nanorods via solid-solid interaction at high temperature annealing and functional properties. Scr. Mater. 113, 163–166 (2016).  https://doi.org/10.1016/j.scriptamat.2015.11.003 CrossRefGoogle Scholar
  13. 13.
    X. Han, H. He, Q. Kuang, X. Zhou, X. Zhang, T. Xu, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C  113, 584–589 (2009).  https://doi.org/10.1021/jp808233e CrossRefGoogle Scholar
  14. 14.
    Y.F. Gao, H.Y. Miao, H.J. Luo, M. Nagai, J.J. Shyue, Morphological and crystallographic transformation of ZnO in solution. J. Phys. Chem. C 112, 1498–1506 (2008).  https://doi.org/10.1021/jp075687p CrossRefGoogle Scholar
  15. 15.
    J. Lv, S. Zhang, L. Luo, W. Han, J. Zhang, K. Yang, P. Christie, Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ. Sci. Technol. 46, 7215–7221 (2012).  https://doi.org/10.1021/es301027a CrossRefGoogle Scholar
  16. 16.
    J. Wang, Y.F. Li, C.Z. Huang, Identification of iodine-induced morphological transformation of gold nanorods. J. Phys. Chem. C 112, 11691–11695 (2008).  https://doi.org/10.1021/jp801993n CrossRefGoogle Scholar
  17. 17.
    J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, [0001] Oriented Aluminum nitride one-dimensional nanostructures: synthesis, structure evolution and electrical properties. ACS Nano 2, 134–142 (2008).  https://doi.org/10.1021/nn700363t CrossRefGoogle Scholar
  18. 18.
    J. Song, S. Lim, Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C 111, 596–600 (2007).  https://doi.org/10.1021/jp0655017 CrossRefGoogle Scholar
  19. 19.
    H.J. Fan, A.S. Barnard, M. Zacharias, ZnO nanowires and nanobelts: shape selection and thermodynamic modeling. Appl. Phys. Lett. 90, 1–4 (2007).  https://doi.org/10.1063/1.2720715 Google Scholar
  20. 20.
    Y. Ding, X.Y. Kong, Z.L. Wang, Doping and planar defects in the formation of single-crystal ZnO nanorings. Phys. Rev. B 70, 1–7 (2004).  https://doi.org/10.1103/PhysRevB.70.235408 Google Scholar
  21. 21.
    K. Yang, B. Chen, X. Zhu, B. Xing, Aggregation, adsorption and morphological transformation of graphene oxide in aqueous solutions containing different metal cations. Environ. Sci. Technol. 50, 11066–11075 (2016).  https://doi.org/10.1021/acs.est.6b04235 CrossRefGoogle Scholar
  22. 22.
    S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Park, Y.H. Jeong, K.W. Rhie, A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu. Appl. Phys. Lett. 81, 4212–4214 (2002).  https://doi.org/10.1063/1.1525885 CrossRefGoogle Scholar
  23. 23.
    N. Driza, S. Blanco-Canosa, M. Bakr, S. Soltan, M. Khalid, L. Mustafa, K. Kawashima, G. Christiani, H.-U. Habermeier, G. Khaliullin, C. Ulrich, M. Le Tacon, B. Keimer, Long-range transfer of electron–phonon coupling in oxide superlattices. Nat. Mater. 11, 675–681 (2012).  https://doi.org/10.1038/nmat3378 CrossRefGoogle Scholar
  24. 24.
    S.P. Garcia, S. Semancik, Controlling the morphology of zinc oxide nanorods crystallized from aqueous solutions: the effect of crystal growth modifiers on aspect ratio. Chem. Mater. 19, 4016–4022 (2007).  https://doi.org/10.1021/cm061977r CrossRefGoogle Scholar
  25. 25.
    L. Li, Y. Guo, X.Y. Cui, R. Zheng, K. Ohtani, C. Kong, A.V. Ceguerra, M.P. Moody, J.D. Ye, H.H. Tan, C. Jagadish, H. Liu, C. Stampfl, H. Ohno, S.P. Ringer, F. Matsukura, Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Phys. Rev. B 85, 1–8 (2012).  https://doi.org/10.1103/PhysRevB.85.174430 Google Scholar
  26. 26.
    Y. He, P. Sharma, K. Biswas, E.Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J.S. Tse, S. Yin, J.Z. Jiang, Origin of ferromagnetism in ZnO codoped with Ga and Co: experiment and theory. Phys. Rev. B 78, 1–7 (2008).  https://doi.org/10.1103/PhysRevB.78.155202 Google Scholar
  27. 27.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005).  https://doi.org/10.1038/nmat1310 CrossRefGoogle Scholar
  28. 28.
    M.S. Park, B.I. Min, Ferromagnetism in ZnO codoped with transition metals. Phys. Rev. B 68, 224436 (2003).  https://doi.org/10.1103/PhysRevB.68.224436 CrossRefGoogle Scholar
  29. 29.
    Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 1–103 (2005).  https://doi.org/10.1063/1.1992666 CrossRefGoogle Scholar
  30. 30.
    Q. Li, K.W. Kwong, D. Ozkaya, D.J.H. Cockayne, Self-assembled periodical polycrystalline-ZnO/a-C nanolayers on Zn nanowire. Phys. Rev. Lett. 92, 186102 (2004).  https://doi.org/10.1103/PhysRevLett.92.186102 CrossRefGoogle Scholar
  31. 31.
    J. Wang, H. Huang, S.V. Kesapragada, D. Gall, Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5, 2505–2508 (2005).  https://doi.org/10.1021/nl0518425 CrossRefGoogle Scholar
  32. 32.
    S.V. Kesapragada, P. Victor, O. Nalamasu, D. Gall, Nanospring pressure sensors grown by glancing angle deposition. Nano Lett. 6, 854–857 (2006).  https://doi.org/10.1021/nl060122a CrossRefGoogle Scholar
  33. 33.
    R. Tararam, E. Joanni, R. Savu, P.R. Bueno, E. Longo, J.A. Varela, A. Cti, R. Dom, I. Pedro, R. Jo, P. Cal, Resistive-switching behavior in polycrystalline CaCu3Ti 4O12 nanorods. ACS Appl. Mater. Interface 3, 500–504 (2011).  https://doi.org/10.1021/am101079g CrossRefGoogle Scholar
  34. 34.
    M.-Y. Lin, S.-H. Wu, L.-J. Hsiao, W. Budiawan, K.M. Boopathi, W.-C. Tu, Y. Chang, C.-W. Chu, Enhance the light-harvesting capability of the ITO-free inverted small molecule solar cell by ZnO nanorods. Opt. Express 24, 17910–17915 (2016).  https://doi.org/10.1364/OE.24.017910 CrossRefGoogle Scholar
  35. 35.
    M.H. Huang, Room-temperature ultraviolet nanowire nanolasers. Science 292(80), 1897–1899 (2001).  https://doi.org/10.1126/science.1060367 CrossRefGoogle Scholar
  36. 36.
    H.-J. Lee, S.-Y. Jeong, C.R. Cho, C.H. Park, Study of diluted magnetic semiconductor: Co-doped ZnO. Appl. Phys. Lett. 81, 4020–4022 (2002).  https://doi.org/10.1063/1.1517405 CrossRefGoogle Scholar
  37. 37.
    C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, F. Pan, Y.N. Xie, T. Liu, H.T. Zhou, Z. Fan, Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO. Phys. Rev. B 73, 1–6 (2006).  https://doi.org/10.1103/PhysRevB.73.024405 Google Scholar
  38. 38.
    O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, B. Rech, Modified thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films. 442, 80–85 (2003).  https://doi.org/10.1016/S0040-6090(03)00949-0 CrossRefGoogle Scholar
  39. 39.
    A.N. Enyashin, M. Bar-sadan, L. Houben, G. Seifert, Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842–10848 (2013).  https://doi.org/10.1021/jp403976d CrossRefGoogle Scholar
  40. 40.
    D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 1996), pp 389–402CrossRefGoogle Scholar
  41. 41.
    L. Zhang, H.J. Xie, Polar optical phonon modes and Fröhlich electron-phonon interaction hamiltonians in coaxial cylindrical quantum cables. Turk. J. Phys. 28, 325–340 (2004)Google Scholar
  42. 42.
    S.W. Jung, S.-J. An, G.-C. Yi, C.U. Jung, S.-I. Lee, S. Cho, Ferromagnetic properties of Zn1 – xMnxO epitaxial thin films. Appl. Phys. Lett. 80, 4561–4563 (2002).  https://doi.org/10.1063/1.1487927 CrossRefGoogle Scholar
  43. 43.
    A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Structural, optical and magnetic properties of diluted magnetic semiconducting Zn1 – xMnxO films. Solid State Commun. 121, 371–374 (2002).  https://doi.org/10.1016/S0038-1098(01)00464-1 CrossRefGoogle Scholar
  44. 44.
    Y.Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T. Chikyow, H.J. Koinuma, ZnO–CoO solid solution thin films. Appl. Phys. Lett. 90, 4246–4250 (2001).  https://doi.org/10.1063/1.1402142 doiGoogle Scholar
  45. 45.
    K.J. Kim, Y.R. Park, Spectroscopic ellipsometry study of optical transitions in Zn1−xCoxO alloys. Appl. Phys. Lett. 81, 1420–1422 (2002).  https://doi.org/10.1063/1.1501765 CrossRefGoogle Scholar
  46. 46.
    S. Deka, P.A. Joy, Ferromagnetism induced by hydrogen in polycrystalline nonmagnetic Zn0.95Co0.05O. Appl. Phys. Lett. 89(1–3), 032508 (2006).  https://doi.org/10.1063/1.2227642 CrossRefGoogle Scholar
  47. 47.
    V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J. Phys. Chem. C 118, 9715–9725 (2014).  https://doi.org/10.1021/jp411848t CrossRefGoogle Scholar
  48. 48.
    J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, UK, 2009), pp. 231–238 ISBN: 13 978-0-511-67743-4Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Department of Physics, Ramjas CollegeUniversity of DelhiDelhiIndia

Personalised recommendations