Skip to main content

Advertisement

Log in

The free-standing multilayer thick films of 0.7Pb(Zr0.46Ti0.54)O3–0.1Pb(Zn1/3Nb2/3)O3–0.2Pb(Ni1/3Nb2/3)O3 with low co-fired temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High performance free-standing multilayer PNN–PZN–PZT thick films have been successfully fabricated by tape-casting and one step co-fired method. Optimal formulation of slurries has been found. Free-standing multilayer thick films with Ag electrodes were obtained after co-fired at 900 °C. With proper pretreatment, compact structure and well combined PZT layers can be obtained, which indicates the tightly integrated structure of multilayer thick films. Diffusion and permeation between Ag electrodes and PZT layers was not observed in specimens sintered at 900 °C. The influences of organic content and sintering temperature on density and crystallinity were discussed. Nine layered specimens showed great electrical properties: d33, tanδ, ε33T/ε0, g33 and Pr of 1880 pC N−1, 2.3%, 1067, 199.00 mV m/N, 82.77 µC cm−2. The displacement of nine layers specimens under same applied voltage was increased from 901 to 8489 nm compared with bulk ceramics. Those outstanding properties indicate that co-fired free-standing PNN–PZN–PZT multilayer thick films are suitable for application in MEMS system, energy harvesting device and piezoelectric power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.S. Han, E.C. Park, J.S. Lee et al., Trans. Electr. Electron. Mater. 12, 249–252 (2011)

    Article  Google Scholar 

  2. L.C. Hoffman, Am. Ceram. Soc. Bull. 63, 572–576 (1984)

    Google Scholar 

  3. X. Ren, H. Fan, Y. Zhao et al., ACS Appl. Mater. Interfaces 8, 26190–26197 (2016)

    Article  Google Scholar 

  4. M. Wang, W. Ma, N. Chen et al., Mater. Lett. 152, 17–20 (2015)

    Article  Google Scholar 

  5. X. Liu, S. Xue, F. Li et al., J. Mater. Chem. C. 6, 814–822 (2018)

    Article  Google Scholar 

  6. J. Shi, H. Fan, X. Liu et al., J. Eur. Ceram. Soc. 34, 3675–3683 (2014)

    Article  Google Scholar 

  7. J.J. Choi, J.H. Lee, B.D. Hahn et al., Mater. Res. Bull. 43, 483–490 (2008)

    Article  Google Scholar 

  8. R. Gao, X. Chu, Y. Huan et al., Phys. Status Solidi A 211, 2378–2383 (2015)

    Article  Google Scholar 

  9. M. Wang, W. Ma, C. Peng et al., Mater Lett. 159, 68–71 (2015)

    Article  Google Scholar 

  10. G. Han, J. Ryu, W.H. Yoon et al., Mater. Lett. 65, 2193–2196 (2015)

    Article  Google Scholar 

  11. H. Hyoung-Su, Y.J. Il, A.K. Kwan, Trans. Electr. Electron. Mater. 12, 249–252 (2011)

    Article  Google Scholar 

  12. S.S. Vadla, A.R. Kulkarni, V. Narayanan, Int J Appl Ceram Tec. 12, 139–145 (2016)

    Article  Google Scholar 

  13. G.T.A. Kovacs, Micromachined Transducers Sourcebook (McGraw-Hill, New York, 2000)

    Google Scholar 

  14. E.S. Thiele, D. Damjanovic, N.J. Setter, Am. Ceram. Soc. 84, 2863–2868 (2001)

    Article  Google Scholar 

  15. M. Wagner, A. Roosen, H. Oostra et al., J. Electroceram. 14, 231–238 (2005)

    Article  Google Scholar 

  16. C.W. Ahn, J.J. Choi, J. Ryu et al., Mater. Lett. 141, 323–326 (2015)

    Article  Google Scholar 

  17. H. Kim, S. Priya, H. Stephanou et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851–1859 (2007)

    Article  Google Scholar 

  18. R.A. Dorey, R.W. Whatmore, J. Electroceram. 12, 19–32 (2004)

    Article  Google Scholar 

  19. V.Q. Nguyen, J.K. Kang, H.S. Han et al., Sens. Actuators A 200, 107–113 (2013)

    Article  Google Scholar 

  20. J. Shi, H. Fan, X. Liu et al., J. Mater. Sci.-Mater. Electron. 26, 9409–9413 (2015)

    Article  Google Scholar 

  21. L. Chen, H. Fan, S. Zhang, J. Am. Ceram. Soc. 100, 3568–3576 (2017)

    Article  Google Scholar 

  22. N.R. Harris, M. Hill, R. Torah et al., Sens. Actuators A 132, 311–316 (2006)

    Article  Google Scholar 

  23. B. Hu, H. Fan, L. Ning et al., Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.03.176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibing Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Ma, W., Yang, Y. et al. The free-standing multilayer thick films of 0.7Pb(Zr0.46Ti0.54)O3–0.1Pb(Zn1/3Nb2/3)O3–0.2Pb(Ni1/3Nb2/3)O3 with low co-fired temperature. J Mater Sci: Mater Electron 29, 11664–11671 (2018). https://doi.org/10.1007/s10854-018-9263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9263-1

Navigation