3D microstructures with MoO2 nanocrystallines embedded into interpenetrated carbon nanosheets for lithium ion batteries

  • Yanyuan Qi
  • Bo Zhou
  • Xue Yang
  • Yang Zhou
  • Wei Jin
  • Jing Zhou
  • Wen Chen


The interpenetrated carbon nanosheets embedded with the MoO2 nanocrystallines (NCs) are self-assembling to a novel three-dimensional (3D) structure by a facile method. During the growth process, the MoO2 NCs induce the dopamine monomer to form polydopamine nanosheets, which construct the 3D framework and are further carbonized. It is worth noticing that MoO2 NCs with the size of 5 nm are uniformly loaded on the interpenetrated carbon nanosheets. More importantly, the design of this special 3D structure can contribute to enhancing the electrochemical performances owning to its large specific area and high electronic conductivity, which lead to not only higher capacity of 983 mA h g−1 after 200 cycles, but also better reversibility and rate capacities. These excellent electrochemical performances suggest that the unique 3D composite can act as a promising anode candidate for high-performance lithium-ion storage.



This work was financially supported by the National Natural Science Foundation of China (51506155).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10854_2018_9247_MOESM1_ESM.docx (434 kb)
Supplementary material 1 (DOCX 434 KB)


  1. 1.
    K.X. Wang, X.H. Li, J.S. Chen, Surface and interface engineering of electrode materials for lithium-ion batteries. Adv. Mater. 27(3), 527–545 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Jiang, H. Zhang, S. Wang, Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn2O4 with superior performance for lithium-ion batteries. Green Chem. 18(3), 662–666 (2016)CrossRefGoogle Scholar
  3. 3.
    R. Wang, X. Li, Z. Wang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 34, 131–140 (2017)CrossRefGoogle Scholar
  4. 4.
    Y.L. Ding, B.M. Goh, H. Zhang, Single-crystalline nanotubes of spinel lithium nickel manganese oxide with lithium titanate anode for high-rate lithium ion batteries. J. Power Sources 236, 19 (2013)CrossRefGoogle Scholar
  5. 5.
    L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)CrossRefGoogle Scholar
  6. 6.
    D.J. Ryu, H.W. Jung, S.H. Lee, D.J. Park, The application of catalyst-recovered SnO2 as an anode material for lithium secondary batteries. Environ. Sci. Pollut. R 23(15), 15015–15022 (2016)CrossRefGoogle Scholar
  7. 7.
    T.R. Penki, S. Shivakumara, M. Minakshi, N. Munichandraiah, Porous flower-like α-Fe2O3 nanostructure: a high performance anode material for lithium-ion batteries. Electrochim. Acta 167, 330–339 (2015)CrossRefGoogle Scholar
  8. 8.
    J.Y. Wang, N.L. Yang, H.J. Tang, Z.H. Dong, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. Int. Ed. 52(25), 6454–6548 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), 170–192 (2010)CrossRefGoogle Scholar
  10. 10.
    X.S. Zhou, L. Yu, X.W. Lou, Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Adv. Energy Mater. 6(14), 1600451 (2016)CrossRefGoogle Scholar
  11. 11.
    X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stoller, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Chen, Y.L. Xin, Y.Y. Zhou, F. Zhang, Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high reversibility and rate capability. J. Mater. Chem. A 2(37), 15582–15589 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004)CrossRefGoogle Scholar
  14. 14.
    S.H. Choi, Y.N. Ko, J.K. Lee, Y.C. Kang, 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 25(12), 1780–1788 (2015)CrossRefGoogle Scholar
  15. 15.
    T. Yang, Y.J. Chen, B.H. Qu, L. Mei, Construction of 3D flower-like MoS2 spheres with nanosheets as anode materials for high-performance lithium ion batteries. Electrochim. Acta 115, 165–169 (2014)CrossRefGoogle Scholar
  16. 16.
    J.Z. Wang, C. Zhong, D. Wexler, N.H. Idris, Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem. Eur. J. 17(2), 661–667 (2011)CrossRefGoogle Scholar
  17. 17.
    P. Zhang, L. Zou, H.X. Hu, M.R. Wang, 3D hierarchical carbon microflowers decorated with MoO2 nanoparticles for lithium ion batteries. Electrochim. Acta 250, 219–227 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Wei, H.W. Liang, K. Parvez, X.D. Zhuang, Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53(6), 1570–1574 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)CrossRefGoogle Scholar
  20. 20.
    C.H. Gao, H.L. Zhao, P.P. Lv, T.H. Zhang, Engineered Si sandwich electrode: Si nanoparticles/graphite sheet hybrid on Ni foam for next-generation high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7(3), 1693–1698 (2015)CrossRefGoogle Scholar
  21. 21.
    J.J. Feng, P.P. Zhang, A.J. Wang, Q.C. Liao, One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis. New J. Chem. 36(1), 148–154 (2012)CrossRefGoogle Scholar
  22. 22.
    F. Gonell, A.V. Puga, B.J. López, Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Appl. Catal. B 180, 263–270 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Bi, K.C. Kou, K. Ostrikov, J.Q. Zhang, Graphitization of nanocrystalline carbon microcoils synthesized by catalytic chemical vapor deposition. J. Appl. Phys. 104(3), 033510 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.L. Liu, H. Zhang, P. Ouyang, Z.C. Li, One-pot hydrothermal synthesized MoO2 with high reversible capacity for anode application in lithium ion battery. Electrochim. Acta 102, 429–435 (2013)CrossRefGoogle Scholar
  25. 25.
    Z.W. Xu, H.L. Wang, Z. Li, A. Kohandehghan, Sulfur refines MoO2 distribution enabling improved lithium ion battery performance. J. Phys. Chem. C 118(32), 18387–18396 (2014)CrossRefGoogle Scholar
  26. 26.
    S.A. Mansour, Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J. Therm. Anal. Calorim. 112(2), 579–583 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Lei, F. Han, D. Li, W.C. Li, Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 5(3), 1168 (2013)CrossRefGoogle Scholar
  28. 28.
    S.L. Li, A.H. Li, R.R. Zhang, Y.Y. He, Hierarchical porous metal ferrite ball-in-ball hollow spheres: general synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 7(8), 1116–1127 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Zhao, Y.C. Liu, H.Q. Liu, H.Y. Kang, Improved dehydrogenation performance of LiBH4 by 3D hierarchical flower-like MoS2 spheres additives. J. Power Sources 300, 358–364 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Hwang, D.C. Min, D. Yoon, W.Y. Chang, Liquid carbon dioxide-based coating of a uniform carbon layer on hierarchical porous MoO2 microspheres and assessment of their electrochemical performance. Chem. Eng. J. 290, 335–345 (2016)CrossRefGoogle Scholar
  31. 31.
    M. Aghazadeh, A.N. Golikand, M. Ghaemi, Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int. J. Hydrogen Energy 36(14), 8674–8679 (2011)CrossRefGoogle Scholar
  32. 32.
    L.J. Wu, J.W. Lang, P. Zhang, X. Zhang, Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. J. Mater. Chem. A 4, 18392–18400 (2016)CrossRefGoogle Scholar
  33. 33.
    Q. Yang, Q. Liang, J. Liu, S.Q. Liang, Ultrafine MoO2 nanoparticles grown on graphene sheets as anode materials for lithium-ion batteries. Mater. Lett. 127, 3235 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Petnikota, K.W. Teo, L. Chen, A. Sim, Exfoliated graphene oxide/MoO2 composites as anode materials in lithium-ion batteries: an insight into intercalation of Li and conversion mechanism of MoO2. ACS Appl. Mater. Interfaces 8(17), 10884–10896 (2016)CrossRefGoogle Scholar
  35. 35.
    T.F. Yi, S.Y. Yang, Y.R. Zhu, Li4Ti5O12-rutile TiO2 nanosheet composite as a high performance anode material for lithium-ion battery. Int. J. Hydrogen Energy 40(27), 5718578 (2015)CrossRefGoogle Scholar
  36. 36.
    H. Wang, L. Xi, J. Tucek, Synthesis and characterization of tin titanate nanotubes: precursors for nanoparticulate Sn-doped TiO2 anodes with synergistically improved electrochemical performance. ChemElectroChem 1(9), 1563–1569 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Lu, Z.H. Chen, Z.F. Ma, F. Pan, The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanyuan Qi
    • 1
    • 2
  • Bo Zhou
    • 1
  • Xue Yang
    • 1
  • Yang Zhou
    • 1
  • Wei Jin
    • 1
  • Jing Zhou
    • 1
  • Wen Chen
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Center for Material Research and AnalysisWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations