Growth and characterization of high quality CIGS films using novel precursors stacked and surface sulfurization process

  • Cheng-Han Wu
  • Pu-Wei Wu
  • Ruey-Chang Hsiao
  • Chun-Yao Hsu


This study produces high quality Cu(In,Ga)Se2 (CIGS) solar cells using a two-step process. Stacked In (200 nm)/CuGa (150 ~ 300 nm)/In (500 nm) layers are deposited onto Mo bilayer soda-lime glass by sputtering, using CuGa and In targets, followed by vapor stacking of the elemental Se layers. To produce the CIGS film, the CuGa film is coated in thicknesses of 150, 200, 250 and 300 nm. An appropriate atomic ratio [Cu/(In + Ga), CGI and Ga/(In + Ga), GGI] for the precursors and the CIGS absorption layers composition is easily obtained. Compared to those for the as-deposited precursors, after selenization, the CGI and GGI ratios for CIGS films are almost constant. All CIGS thin films exhibit a peak in the Raman curves at around 173–174 cm−1, which is identified as the CIGS phase. Following sulfurization, the main peaks for CIGS thin films at (112), (220)/(204) and (312)/(116) indicated that the crystalline quaility were improved. The main peaks for the CIGSS films are slightly greater for (112), (220)/(204) and (312)/(116). The band gap energy is increased from 1.19 eV (for the as-grown) to 1.34 eV (for the absorber layer that is sulfurized at 500 °C for 10 min). The performance of the CIGS absorber films is improved by using a proper holding time for sulfurization.



The authors gratefully acknowledge the support of the Ministry of Science and Technology of the Republic of China, through Grant nos. MOST 104-2221-E-262-011-, and the Chung-Shan Institute of Science & Technology, through Grant nos. CSIST-305-V302 (Armaments Bureau).

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.


  1. 1.
    L.R. Zhang, T. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H. Yan, J. Mater. Sci.-Mater. Electron. 29, 3482 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011)CrossRefGoogle Scholar
  3. 3.
    P. Zou, L. Wan, S.H. Pan, M.M. Meng, Z.Q. Guo, J.Z. Xu, J. Mater. Sci.-Mater. Electron. 24, 4530 (2013)CrossRefGoogle Scholar
  4. 4.
    Y.C. Lin, Z.Q. Lin, C.H. Shen, L.Q. Wang, C.T. Ha, C. Peng, J. Mater. Sci.-Mater. Electron. 23, 493 (2012)CrossRefGoogle Scholar
  5. 5.
    H.T. Lu, C.Y. Ou, C.H. Lu, J. Mater. Sci.-Mater. Electron. 29, 1614 (2018)CrossRefGoogle Scholar
  6. 6.
    L. Sun, J.H. Ma, N.J. Yao, Z.M. Huang, J.H. Chu, J. Mater. Sci.-Mater. Electron. 27, 9124 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993)CrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Zhu, L.L. Liao, J. Mater. Sci.-Mater. Electron. 25, 1863 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. BraKunig, Sol. Energy Mat. Sol. Cells 67, 159 (2001)CrossRefGoogle Scholar
  10. 10.
    S.H. Chun, Y.H. Kwon, H.K. Cho, J. Mater. Sci.-Mater. Electron. 25, 3492 (2014)CrossRefGoogle Scholar
  11. 11.
    P.C. Huang, C.C. Sung, J.H. Chen, R.C. Hsiao, C.Y. Hsu, J. Mater. Sci.-Mater. Electron. 29, 1444 (2018)CrossRefGoogle Scholar
  12. 12.
    S.U. Park, R. Sharma, K. Ashok, S. Kang, J.K. Sim, C.R. Lee, J. Cryst. Growth 359, 1 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Kang, R. Sharma, J.K. Sim, C.R. Lee, J. Alloy Compd. 563, 207 (2013)CrossRefGoogle Scholar
  14. 14.
    H.R. Hsu, S.C. Hsu, Y.S. Liu, Appl. Phys. Lett. 100, 233903 (2012)CrossRefGoogle Scholar
  15. 15.
    L.R. Zhang, L. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H. Yan, J. Mater. Sci.-Mater. Electron. 29, 3482 (2018)CrossRefGoogle Scholar
  16. 16.
    P.C. Huang, C.H. Huang, M.Y. Lin, C.Y. Chou, C.Y. Hsu, C.G. Kuo, Int. J. Photoenergy (2013). Google Scholar
  17. 17.
    D.G. Moon, S. Ahn, J.H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H.D. Lee, H. Pak, S. Kwon, Sol. Energy Mater. Sol. Cells 95, 2786 (2011)CrossRefGoogle Scholar
  18. 18.
    Y. Cho, D.W. Kim, S. Ahn, D. Nam, H. Cheong, G.Y. Jeong, J. Gwak, J.H. Yun, Thin Solid Films 546, 358 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Liu, A.X. Wei, Y. Zhao, Z.Q. Yan, J. Mater. Sci.-Mater. Electron. 24, 2553 (2013)CrossRefGoogle Scholar
  20. 20.
    G.Y. Kim, W. Jo, H.J. Jo, D.H. Kim, J.K. Kang, Curr. Appl. Phys. 15, S44 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Han, J. Koo, H. Jung, W.K. Kim, J. Alloys Compd. 552, 131 (2013)CrossRefGoogle Scholar
  22. 22.
    A.B. Marai, J.B. Belgacem, Z.B. Ayadi, K. Djessas, S. Alaya, J. Alloys Compd. 658, 961 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Sidali, A. Duchatelet, E. Chassaing, D. Lincot, Thin Solid Films 582, 69 (2015)CrossRefGoogle Scholar
  24. 24.
    H.H. Sung, D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.C. Lin, T.J. Lin, S.C. Liang, F.S. Shieu, Surf. Coat. Technol. 259, 335 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Caballero, C.A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, H.W. Schock, Prog. Photovolt: Res. Appl. 21, 30 (2013)CrossRefGoogle Scholar
  26. 26.
    Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Y. Zhang, Y. Zhao, Appl. Surf. Sci. 258, 5222 (2012)CrossRefGoogle Scholar
  27. 27.
    D. Lee, J.Y. Yang, Y.S. Kim, C.B. Mo, S. Park, B. Kim, D. Kim, J. Nam, Y. Kang, Sol. Energy Mater. Sol. Cells 149, 195 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Liu, D.M. Zhuang, M.J. Cao, X.L. Li, M. Xie, D.W. Xu, Vacuum 102, 26 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Koo, S. Jeon, M. Oh, H. Cho, C. Son, W.K. Kim, Thin Solid Films 535, 148 (2013)CrossRefGoogle Scholar
  30. 30.
    U.P. Singh, W.N. Shafarman, R.W. Birkmire, Sol. Energy Mater. Sol. Cells 90, 623 (2006)CrossRefGoogle Scholar
  31. 31.
    J.W. Jang, S.M. Lee, I.J. Choi, Y.S. Cho, J. Alloys Compd. 710, 177 (2017)CrossRefGoogle Scholar
  32. 32.
    S.H. Lin, J.C. Sung, C.H. Lu, Thin Solid Films 616, 746 (2016)CrossRefGoogle Scholar
  33. 33.
    V. Alberts, Semicond. Sci. Technol. 22, 585 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, K. Kushiya, Sol. Energy Mater. Sol. Cells 93, 1318 (2009)CrossRefGoogle Scholar
  35. 35.
    H.T. Lu, C.Y. Yang, C.H. Lu, J. Mater. Sci.-Mater. Electron. 27, 10642 (2016)CrossRefGoogle Scholar
  36. 36.
    T. Kobayashi, H. Yamaguchi, Z.J.L. Kao, H. Sugimoto, T. Kato, H. Hakuma, T. Nakada, Prog. Photovolt: Res. Appl. 23, 1367 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Liu, Z. Liu, F. Meng, M. Sugiyama, Sol. Energy Mater. Sol. Cells 124, 227 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Xie, H. Chen, A. Li, X. Zhu, L. Zhang, M. Qin, Y. Wang, Y. Liu, F. Huang, J. Mater. Chem. A 2, 13237 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan, Republic of China
  2. 2.Department of Chemical and Materials EngineeringLunghwa University of Science and TechnologyTaoyuanTaiwan, Republic of China
  3. 3.Department of Mechanical EngineeringLunghwa University of Science and TechnologyTaoyuanTaiwan, Republic of China

Personalised recommendations