Effect of IrO2/Pt, IrO2, and Pt bottom electrodes on the structure and electrical properties of PZT based piezoelectric microelectromechanical system devices

  • D. M. Potrepka
  • M. Rivas
  • H. Yu
  • M. Aindow
  • G. R. Fox
  • R. G. Polcawich


In piezoelectric microelectromechanical system devices with PbZr x Ti1−xO3 as the ferroelectric, the bottom electrode can provide a template for oriented PbZr x Ti1−xO3 growth. IrO2/Pt, IrO2, and Pt bottom electrode layers were sputter deposited onto TiO2 and were used as growth templates for oriented PbZr0.52Ti0.48O3 growth. The IrO2 and Pt were found to be {100}- and {111}-oriented, respectively, by X-ray diffraction. Scanning/transmission electron microscopy results indicate that the bottom electrodes are textured; however, the PbZr0.52Ti0.48O3 layer is partially textured. The impact of the bottom electrode type on the electrical properties is investigated by dielectric, ferroelectric, and piezoelectric measurements on circular capacitors formed on blanket PbZr0.52Ti0.48O3 films and unimorph cantilevers. For devices with PbZr0.52Ti0.48O3 on IrO2/Pt bottom electrodes, values for the dielectric constant of 1103 ± 28, loss tangent of 0.070 ± 0.004, maximum polarization of 0.399 ± 0.003 C/m2 at 38 MV/m, and leakage current of 5.4 ± 5.8 nA at 20 MV/m were obtained. Values of normalized strain of 0.0030 ± 0.0001 at 20 MV/m, and effective piezoelectric coefficient, d31,f, of 100 ± 25 pm/V at 15 MV/m were obtained on cantilever unimorphs with electrode area 16 µm × 123 µm and PZT area 16 µm × 125 µm. These values are comparable to results obtained for PbZr0.52Ti0.48O3 on 100 nm thick Pt-only bottom electrodes.



The authors gratefully acknowledge Steven K. Isaacson and Joel L. Martin for process support, Brian K. Power for device fabrication support, and Ryan Q. Rudy for assistance with measurement analyses. The microscopy studies described in this paper were performed using the facilities in the UConn/Thermo Fisher Scientific Center for Advanced Microscopy and Materials Analysis (CAMMA) and were supported in part by a research grant from Thermo Fisher Scientific Company. Funding for this work was provided by US Army contract numbers W911NF-15-2-0118 and W911NF-11-2-0053. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. DoD will provide public access to these results of federally sponsored research in accordance with the DoD Public Access Plan (

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9224_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7097 KB)


  1. 1.
    L. Trupina, C. Miclea, L. Amarande, M. Cioangher, J. Mater. Sci. 46, 6380 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Gong, C. Wang, Q. Shen, L. Zhang, Appl. Surf. Sci. 285, 324 (2013)CrossRefGoogle Scholar
  3. 3.
    K. Aoki, Y. Fukuda, K. Numata, A. Nishimura, Jpn. J. Appl. Phys. 35, 2210 (1996)CrossRefGoogle Scholar
  4. 4.
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett. 65, 1522 (1994)CrossRefGoogle Scholar
  5. 5.
    D. Van Genechten, G. Vanhoyland, J. D’Haen, J. Johnson, D.J. Wouters, M.K. Van Bael, H. Van den Rul, J. Mullens, L.C. Van Poucke, Thin Solid Films 467, 104 (2004)CrossRefGoogle Scholar
  6. 6.
    Y. Masuda, T. Nozaka, Jpn. J. Appl. Phys. 42, 5941 (2003)CrossRefGoogle Scholar
  7. 7.
    K. Kushida-Abdelghafar, H. Miki, F. Yano, Y. Fujisaki, Jpn. J. Appl. Phys. 36, L1032 (1997)CrossRefGoogle Scholar
  8. 8.
    K. Kushida-Abdelghafar, M. Hiratani, Y. Fujisaki, J. Appl. Phys. 85, 1069 (1999)CrossRefGoogle Scholar
  9. 9.
    G.R. Fox, S. Sun, T. Takamatsu, Integr. Ferroelectr. 31, 47 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Kim, D. Park, H.-J. Woo, D. Lee, J. Ha, C.S. Hwang, J. Mater. Res. 17, 1735 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Fox, F. Chu, B. Eastep, T. Takamatsu, Y. Horii, K. Nakamura, Inventors Fujitsu Limited, Assignee. Process for producing high quality PZT films for ferroelectric memory integrated circuits. US patent 6,887,716, 3 May 2005Google Scholar
  12. 12.
    F. Chu, G. Fox, Inventors Ramtron International Corporation, Assignee. Method for manufacturing a ferroelectric memory cell including co-annealing. US patent 6,376,259, 23 Apr 2002Google Scholar
  13. 13.
    K. Matsuura, M. Tani, Y. Horii, F. Chu, G.R. Fox, B. Eastep, Inventors Fujitsu Limited, Assignee. Semiconductor device having a ferroelectric capacitor and a fabrication process thereof. US patent 6,964,873, 15 Nov 2005Google Scholar
  14. 14.
    D.M. Potrepka, R.G. Polcawich, H. Yu, M. Rivas, M. Aindow, G.R. Fox, Thin Solid Films 638, 127 (2017)CrossRefGoogle Scholar
  15. 15.
    L.M. Sanchez, D.M. Potrepka, G.R. Fox, I. Takeuchi, K. Wang, L.A. Bendersky, R.G. Polcawich, J. Mater. Res. 28, 1920 (2013)CrossRefGoogle Scholar
  16. 16.
    G.R. Fox, D.M. Potrepka, R.G. Polcawich, J. Mater. Sci. Mater. Electron. 29, 412 (2018)CrossRefGoogle Scholar
  17. 17.
    R.Q. Rudy, K.M. Grove, M. Rivas, J. Guerrier, C. Cress, R.R. Benoit, J.L. Jones, E. Glaser, S. Brewer, N. Bassiri-Gharb, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(7), 1135 (2017)CrossRefGoogle Scholar
  18. 18.
    L.M. Sanchez, Optimization of Pb(Zr52Ti48)O3 through improved platinum metallization, use of a PbTiO3 seed layer, and fine tuning of annealing conditions for applications in multilayer actuator MEMS technology, Ph.D. Thesis, University of Maryland, College Park, 2014Google Scholar
  19. 19.
    M. Pham-Thi, H. Hemery, H. Dammak, J. Eur. Ceram. Soc. 25, 2433 (2005)CrossRefGoogle Scholar
  20. 20.
    F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959)CrossRefGoogle Scholar
  21. 21.
    Powder Diffraction File Database, The International Centre for Diffraction Data (ICDD), Newtown Square, PAGoogle Scholar
  22. 22.
    B.-H. Hwang, J. Phys. D 34, 2469 (2001)CrossRefGoogle Scholar
  23. 23.
    D. Demjanovic, in Hysteresis in Piezoelectric and Ferroelectric Materials, ed. by I. Mayergoyz, G. Bertotti. The Science of Hysteresis, vol. 3 (Elsevier, San Diego, 2006), pp. 337–465CrossRefGoogle Scholar
  24. 24.
    R.G. Polcawich, J.S. Pulskamp, in MEMS Materials and Processes Handbook, ed. by R. Ghodssi, P. Lin. MEMS Reference Shelf (Springer, New York, 2011), pp. 288–290Google Scholar
  25. 25.
    J.S. Pulskamp, A. Wickenden, R. Polcawich, B. Piekarski, M. Dubey, G. Smith, J. Vac. Sci. Technol. B 21(6), 2482 (2003)CrossRefGoogle Scholar
  26. 26.
    Unpublished work performed by M. Rivas at the U.S. Army Research Laboratory that was presented at The IEEE International Symposium on Applications of Ferroelectrics (ISAF), Atlanta Georgia (2017)Google Scholar
  27. 27.
    Y. Umeno, J.M. Albina, B. Meyer, C. Elsasser, Phys. Rev. B (2009). Google Scholar
  28. 28.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 8–20Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • D. M. Potrepka
    • 1
  • M. Rivas
    • 2
  • H. Yu
    • 2
  • M. Aindow
    • 2
  • G. R. Fox
    • 3
  • R. G. Polcawich
    • 1
  1. 1.Sensors and Electron Devices Directorate, U.S. Army Research LaboratoryAdelphiUSA
  2. 2.Department of Materials Science and Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  3. 3.Fox Materials ConsultingLLCColorado SpringsUSA

Personalised recommendations