Skip to main content
Log in

Influence of carrier gas pressure on nebulizer spray deposited tin disulfide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin disulfide (SnS2) thin films deposited using by nebulizer spray pyrolysis method (NSP) with different carrier gas pressure (as 0.078, 0.068 and 0.058 Pa) at 325 °C is reported. The prepared films were characterized by X-ray diffraction, Raman spectrum, scanning electron microscopy, atomic force microscopy, EDAX, UV–Vis spectroscopy and photoluminescence analysis. Electrical properties study done by Hall effect measurements for the films deposited at various carrier gas pressures is also reported. Structural and surface morphological analyses showed highly crystalline pure phase of SnS2 thin films with relatively low surface roughness. Hall measurements revealed that the conductivity and mobility are in the range from 0.00007 to 15 (Ω−1 cm−1) and 16 to 37 (cm2 Vs−1), respectively. These results suggest that, using the optimized carrier gas pressure and other nebulizer spray parameters such as substrate temperature and nebulizer nozzle to substrate distance, a device quality conformal deposition of tin disulfide thin film which is essential for the thin film solar cell structures can be prepared using NSP method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Gowri Manohari, K. Santhosh Kumar, C. Lou, T. Mahalingam, C. Manoharan, Mater. Lett. 155, 121–124 (2015)

    Article  Google Scholar 

  2. O.E. Ogah, G. Zoppi, I. Forbes, R.W. Miles, Thin Solid Films. 517, 2485–2488 (2009)

    Article  Google Scholar 

  3. N.G. Deshpande, A.A. Sagade, Y.G. Gudage, C.D. Lokhande, R. Sharma, J. Alloys Compd. 421, 436–442 (2007)

    Google Scholar 

  4. K. Deva Arun Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, J. Mater. Sci.: Mater. Electron. 28, 14209–14216 (2017)

    Google Scholar 

  5. N. Anitha, M. Anitha, L. Amalraj, Optik 148, 28–38 (2017)

    Article  Google Scholar 

  6. S. Gedi, V.R.M. Reddy, B. Pejjai, C. Park, C.-W. Jeon, T.R.R. Kotte, Ceram. Int. 43, 3713–3719 (2017)

    Article  Google Scholar 

  7. V. Robles, J.F. Trigo, C. Guillen, J. Herrero, J. Mater. Sci. 48, 3943–3949 (2013)

    Article  Google Scholar 

  8. I.B. Kherchachi, H. Saidi, A. Attaf, N. Attaf, A. bouhdjar, H. Bendjdidi, Y. Benkhetta, R. Azizi, M. Jlassi, Optik 127, 4043–4046 (2016)

    Article  Google Scholar 

  9. B.R. Sankapal, R.S. Mane, C.D. Lokhande, J. Mater. Res. Bull. 35, 2027–2035 (2000)

    Article  Google Scholar 

  10. O.A. Yassin, A.A. Abdelaziz, A.Y. Jaber, Mater. Sci. Semicond. Process. 38, 81–86 (2015)

    Article  Google Scholar 

  11. C.D. Lokhande, J. Phys. D 23, 1703 (1990)

    Article  Google Scholar 

  12. K.T.R. Reddy, G. Sreedevi, R.W. Miles, J. Mater. Sci. Eng. A 3, 182–186 (2013)

    Google Scholar 

  13. J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, Eur. Phys. J. Appl. Phys. 61, 1–4 (2013)

    Article  Google Scholar 

  14. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Opt. Mater. 20, 159 (2002)

    Article  Google Scholar 

  15. R. Mariappan, M. Ragavendar, V. Ponnuswamy, Optik 122, 2216–2219 (2011)

    Article  Google Scholar 

  16. L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, Chem. Mater. 11, 1792–1799 (1999)

    Article  Google Scholar 

  17. C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Thin Solid Films 520, 4898–4901 (2012)

    Article  Google Scholar 

  18. B.B. Thangaraju, P. Kaliannan, J. Phys. D 33, 1054–1059 (2000)

    Article  Google Scholar 

  19. S. Valanarasu, V. Dhanasekaran, M. Karunakaran, R. Chandramohan, T. Mahalingam, J. Nanosci. Nanotechnol. 14, 4286–4291 (2014)

    Article  Google Scholar 

  20. B. Gokul, P. Matheswaran, R. Sathyamoorthy, J. Mater. Sci. Technol. 29, 17–21 (2013)

    Article  Google Scholar 

  21. E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus, Chalcogenide Lett. 7, 685–694 (2010)

    Google Scholar 

  22. E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, C. Gumus, Appl. Surf. Sci. 257, 1189–1195 (2010)

    Article  Google Scholar 

  23. G. Lucovsky, J.C.J. Mikkelson, W.Y. Liang, R.M. White, R.M. Martin, Phys. Rev. B 14, 1663 (1976)

    Article  Google Scholar 

  24. S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, S. Chaudhuri, Mater. Res. Bull. 42, 576–583 (2007)

    Article  Google Scholar 

  25. A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids, G. Mezinskis, Mater. Chem. Phys. 117, 52–61 (2016)

    Article  Google Scholar 

  26. S.R. Gajjela, K. Ananthanarayanan, C. Yap, M. Gratzel, P. Balaya, Energy Environ. Sci. 3, 838–845 (2010)

    Article  Google Scholar 

  27. T. Sall, M. Mollar, B. Mari, J. Mater. Sci. 51, 7607–7613 (2016)

    Article  Google Scholar 

  28. S.A. Bashkirov, V.V. Lazenka, V.F. Gremenok, K. Bente, J. Adv. Microsc. Res. 6, 153–158 (2011)

    Article  Google Scholar 

  29. T. Srinivasa Reddy, M.C. Santhosh Kumar, RSC Adv. 6, 95680 (2016)

    Article  Google Scholar 

  30. M.A. Majeed Khan, W. Khan, J. Electron. Mater. 8, 4453–4459 (2016)

    Article  Google Scholar 

  31. S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, K.T.R. Reddy, Opt. Mater. 42, 468–475 (2015)

    Article  Google Scholar 

  32. M. Salavati-Niasari, F. Davar, M.R. Loghman-Estarki, J. Alloys Compd. 481, 776–780 (2009)

    Article  Google Scholar 

  33. G. Kiruthigaa, C. Manoharan, M. Bououdina, S. Ramalingam, C. Raju, Solid State Sci. 44, 32–38 (2015)

    Article  Google Scholar 

  34. M. Salavati-Niasari, D. Ghanbari, F. Davar, J. Alloys Compd. 492, 570–575 (2010)

    Article  Google Scholar 

  35. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, R.G. Gordon, Adv. Energy Mater. 1(6), 1116–1125 (2011)

    Article  Google Scholar 

  36. M. Devika, K.T. Ramakrishna Reddy, N. Koteeswara Reddy, K. Ramesh, R. Ganesan, E.S.R. Gopal, K.R. Gunasekhar, J. Appl. Phys. 100, 023518 (2006)

    Article  Google Scholar 

  37. N. Koteeswara Reddy, K.T. Ramakrishna Reddy, Solid-State Electron. 49, 902–906 (2005)

    Article  Google Scholar 

  38. T.H. Sajeesh, A.R. Warrier, C.S. Kartha, K.P. Vijayakumar, Thin Solid Films 518, 4370–4374 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the Department of Science and Technology, New Delhi, India for their financial assistance for the work by the project number SB/FTP/PS-131/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Valanarasu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulanantham, A.M.S., Valanarasu, S., Kathalingam, A. et al. Influence of carrier gas pressure on nebulizer spray deposited tin disulfide thin films. J Mater Sci: Mater Electron 29, 11358–11366 (2018). https://doi.org/10.1007/s10854-018-9223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9223-9

Navigation