Skip to main content
Log in

Electrochemical studies on Ni doped CuS nanostructures with cationic surfactant synthesized through a hydrothermal route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nickel doped CuS nanostructures has been successfully synthesized using copper nitrate, thiourea as sulfur source and CTAB as cationic surfactant by hydrothermal route and their structural, optical and electrochemical properties are proposed in this work. The effect of cationic surfactant (CTAB) for adjusting the shape/size, porosity and electrochemical properties of CuS nanostructures was examined. The resulting samples were characterized by XRD, FT-IR, UV–Vis, SEM/EDS, TEM, XPS and BET. Then the synthesized samples were utilized for electrochemical performance to modify the glassy carbon electrode (GCE). The electrochemical test reveals that Ni doped CuS exhibits a high specific capacitance of 753 Fg−1 in a 2 M KOH electrolyte solution. This work confirms the as-obtained Ni doped CuS can serve as superior electrode material for future generation supercapacitor device. The better capacity of the modified GCE electrode may bring novel opportunities in the expansion of economical, elevated performance and flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Hertzberg, A. Alexeev, G. Yushin, Deformations in Si–Li anodes upon electrochemical alloying in nano-confined space. J. Am. Chem. Soc. 132, 8548–8549 (2010)

    Article  Google Scholar 

  2. S.J. Ding, T. Zhu, J.S. Chen, Z.Y. Wang, C.L. Yuan, X.W. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 21, 6602–6606 (2011)

    Article  Google Scholar 

  3. B.H. Qu, M. Zhang, D.N. Lei, Y.P. Zeng, Y.J. Chen, L.B. Chen, Q.H. Li, Y.G. Wang, T.H. Wang, Facile solvothermal synthesis of mesoporous Cu2SnS3 spheres and their application in lithium-ion batteries. Nanoscale 3, 3646–3651 (2011)

    Article  Google Scholar 

  4. G. Zhang, H.B. Wu, H.E. Hoster, M.B. Chan-Park, X.W. Lou, Single crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453–9456 (2012)

    Article  Google Scholar 

  5. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010)

    Article  Google Scholar 

  6. R.R. Jiang, T. Huang, J.L. Liu, J.H. Zhuang, A.S. Yu, A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim. Acta 54, 3047–3052 (2009)

    Article  Google Scholar 

  7. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  8. B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1 (1997)

    Article  Google Scholar 

  9. H. J. Cheng, H. Yan, Y. Lu, K. Qiu, Q. Hou, J. Xu, L. Han, X. Liu, J.K. Kim, Y. Luo, Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3, 9769–9776 (2015)

    Article  Google Scholar 

  10. F. Zhao, W. Huang, Q. Shi, D. Zhou, L. Zhao, H. Zhang, Low temperature fabrication of hydrangea-like NiCo2S4 as electrode materials for high performance supercapacitors. Mater. Lett. 186, 206–209 (2017)

    Article  Google Scholar 

  11. H. Chen, X. Liu, J. Zhang, F. Dong, Y. Zhang, Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes. Ceram. Int. 42, 8909–8914 (2016)

    Article  Google Scholar 

  12. C. Zhang, Y. Huang, S. Tang, M. Deng, Y. Du, High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energy Lett. 24, 759–768 (2017)

    Article  Google Scholar 

  13. H. Heydari, S.E. Moosavifard, S. Elyasi, M. Shahraki, Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors. Appl. Surf. Sci. 394, 425–430 (2017)

    Article  Google Scholar 

  14. Z. Zhang, X. Huang, H. Li, Y. Zhao, T. Ma, 3-D honeycomb NiCo2S4 with high electrochemical performance used for supercapacitor electrodes. Appl. Surf. Sci. 400, 238–244 (2017)

    Article  Google Scholar 

  15. B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem. Eng. J. 308, 1165–1173 (2017)

    Article  Google Scholar 

  16. T. Sun, Z. Li, X. Liu, L. Ma, J. Wang, S. Yang, Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors. J. Power Sources 331, 180–188 (2016)

    Article  Google Scholar 

  17. S. Mohammad, S.N. Masoud, A. Mohsen, G. Davood, D. Mahnaz, CuIns2/Cus nanocomposite: synthesis via simple microwave approach and investigation its behavior in solar cell. J. Inorg. Organomet. Polym. 22, 1139–1145 (2012)

    Article  Google Scholar 

  18. S.K. Seyede, D. Hossein, Ca-doped CuS/graphene sheet nanocomposite as a highly catalytic counter electrode for improving quantum dot-sensitized solar cell performance. RSC Adv. 6, 10880–10886 (2016)

    Article  Google Scholar 

  19. W. Zhang, R. Xu, Surface engineered active photocatalysts without noble metals: CuS-ZnxCd1LxS nanospheres by one-step synthesis. Int. J. Hydrog. Energy 34, 8495–8503 (2009)

    Article  Google Scholar 

  20. Z.H. Wang, D.Y. Geng, Y.J. Zhang, Z.D. Zhang, CuS:Ni flowerlike morphologies synthesized by the solvothermal route. Mater. Chem. Phys. 122, 241–245 (2010)

    Article  Google Scholar 

  21. J. Macanas, M. Farre, M. Mureioz, S. Alegret, D.N. Muraview, Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications. Phys. Status Solid A 203(6), 1194 (2006)

    Article  Google Scholar 

  22. P. Rujz, M. Manoz, J. Macans, D.N. Muraviev, Inter matrix synthesis of polymer-copper nanocomposites with Tunable parameters by using copper comportionation reaction. Chem. Mater. 22(24), 6616–6628 (2010)

    Article  Google Scholar 

  23. W. Zhou, X. Liu, Y. Sang, Z. Zhao, K. Zhou, H. Liu, S. Chen, Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. Appl Mater. Interfaces 6, 4578–4586 (2014)

    Article  Google Scholar 

  24. P. Wang, Y. Gao, P. Li, X. Zhang, H. Niu, Z. Zheng, Doping Zn2+ in CuS nanoflowers into chemically homogeneous Zn0.49Cu0.50S1.01 superlattice crystal structure as high-efficiency n‑type photoelectric semiconductors. Appl. Mater. Interfaces 8, 15820–15827 (2016)

    Article  Google Scholar 

  25. Z. Liying, X. Yi, Z. Xiuwen, L. Xiang, Z. Gui’en, Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. J. Cryst. Growth 260, 494–499 (2004)

    Article  Google Scholar 

  26. R.D. Shannan, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  27. M. Luo, Y. Liu, J.C. Hu, H. Liu, J.L. Li, One Pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. Appl. Mater. Interfaces 4, 1813–1821 (2012)

    Article  Google Scholar 

  28. M. Silambarasan, P.S. Ramesh, D. Geetha, Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures. J. Mater. Sci.: Mater. Electron. 28(1), 323–336 (2016)

    Google Scholar 

  29. D. Yan, H. Zhang, L. Chen, G. Zhu, S. Li, H. Xu, A. Yu, Biomorphic synthesis of mesoporous Co3O4 microtubules and their pseudocapacitive performance. Appl. Mater. Interfaces 6, 15632–15637 (2014)

    Article  Google Scholar 

  30. L.Z. Pei, J.F. Wang, X.X. Tao, S.B. Wang, Y.P. Dong, C.G. Fan, Q.F. Zhang, Synthesis of CuS and Cu1.1Fe1.1S2 crystals and their electrochemical properties. Mater. Charact. 62(3), 354–359 (2011)

    Article  Google Scholar 

  31. M. Silambarasan, P.S. Ramesh, D. Geetha, Co-precipitation synthesis and enhanced electrochemical pseudocapacitive properties of spinel nickel cobaltite nanostructures modified glassy carbon electrodes. Springer Proc. Phys. 189, 219–231 (2017)

    Article  Google Scholar 

  32. Y. Zhao, H. Pan, Y. Lou, X. Qiu, J. Zhu, C. Burda, Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009)

    Article  Google Scholar 

  33. A. Shameem, P. Devendran, V. Siva, K.S. Venkatesh, A. Manikandan, S. Asath Bahadur, N. Nallamuthu, Dielectric investigation of NaLiS nanoparticles loaded on alginate polymer matrix synthesized by single pot microwave irradiation. J. Inorg. Organomet. Polym. Mater. 28, 671–678 (2017)

    Article  Google Scholar 

  34. W. Chunyan, H.Y. Shu, C. Shaofeng, L. Guannan, L. Bianhua, Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J. Mater. Chem. 16, 3326–3331 (2006)

    Article  Google Scholar 

  35. M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W.S. Khan, F.K. But, M. Tahira, N. Mahmood, Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. Cryst. Eng. Commun. 16, 5290–5300 (2014)

    Article  Google Scholar 

  36. J. Yang Liu, S. Zhang, K. Wang, Z. Wang, Q. Chen, Xu, Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors. New J. Chem. 38, 4045–4048 (2014)

    Article  Google Scholar 

  37. P. Surekha, D. Geetha, P.S. Ramesh, One-pot synthesis of CTAB stabilized mesoporous cobalt doped CuS nano flower with enhanced pseudocapacitive behavior. J. Mater. Sci.: Mater. Electron. 28, 15387–15397 (2017)

    Google Scholar 

  38. Y. Fang, B. Luo, Y. Jia, X. Li, B. Wang, Q. Song, F. Kang, L. Zhi, Renewing functionalized graphene as electrodes for high-performance supercapacitors. Adv. Mater. 24, 6348–6355 (2012)

    Article  Google Scholar 

  39. S.S. Shindea, G.S. Gunda, D.P. Dubalb, S.B. Jamburea, S.B. Lokhande, Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 119, 1–10 (2014)

    Article  Google Scholar 

  40. P. Surekha, D. Geetha, P.S. Ramesh, Preparation and characterization of porous hollow sphere of Ni doped CuS nanostructures for electrochemical supercapacitor electrode material. Springer Proc. Phys. 189, 277–288 (2017)

    Article  Google Scholar 

  41. M. Silambarasan, P.S. Ramesh, D. Geetha, V. Venkatachalam, A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties. J. Mater. Sci.: Mater. Electron. 28, 6880–6888 (2016)

    Google Scholar 

  42. M. Silambarasan, N. Padmanathan, P.S. Ramesh, D. Geetha, Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties. Mater. Res. Express. 3(9), 1–11 (2016)

    Article  Google Scholar 

  43. J. Yang, W. Guo, D. Li, Q. Qin, J. Zhang, C. Wei, H.F.L. Wu, W. Zheng, Hierarchical porous NiCo2S4 hexagonal plates: formation via chemical conversion and application in high performance supercapacitors. Electrochim. Acta 144, 16–21 (2014)

    Article  Google Scholar 

  44. K.S. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311, 977–980 (2006)

    Article  Google Scholar 

  45. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Surface modifications of electrode materials for lithium ion batteries. Solid State Sci. 8, 113–128 (2006)

    Article  Google Scholar 

  46. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrodematerial’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)

    Article  Google Scholar 

  47. J. Jiang, Y.Y. Li, J.P. Liu, X.T. Huang, C.Z. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    Article  Google Scholar 

  48. T. Fang, J.G. Duh, S.R. Sheen, Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating batteries, fuel cells, and energy conversion. J. Electrochem. Soc. 152, A1701–A1706 (2005)

    Article  Google Scholar 

  49. G.L. Wang, J.C. Huang, S.L. Chen, Y.Y. Gao, D.X. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)

    Article  Google Scholar 

  50. S.K. Mondal, N. Munichandraiah, Anodic deposition of porous RuO2 on stainless steel for supercapacitor studies at high current densities. J. Power Sources 175, 657–663 (2008)

    Article  Google Scholar 

  51. L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682–2699 (2011)

    Article  Google Scholar 

  52. F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Functional materials for rechargeable batteries, Adv. Mater. 23, 1695–1715 (2011)

    Article  Google Scholar 

  53. H. Li, Z.X. Wang, L.Q. Chen, X.J. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009)

    Article  Google Scholar 

  54. Z. Chen, V. Augustyn, J. Wen, Y.W. Zhang, M.Q. Shen, B. Dunn, Y.F. Lu, High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011)

    Article  Google Scholar 

  55. A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high performance supercapacitor. Appl. Surf. Sci 282, 704–708 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciatively thanks to the financial support afford by University grants commission (UGC), India, No. F.No- 43–533/2014 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Geetha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podili, S., Geetha, D. & Ramesh, P.S. Electrochemical studies on Ni doped CuS nanostructures with cationic surfactant synthesized through a hydrothermal route. J Mater Sci: Mater Electron 29, 11167–11177 (2018). https://doi.org/10.1007/s10854-018-9202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9202-1

Navigation