Skip to main content
Log in

The effects of mixture ratios of CuPc:C60 in nanostructured organic hybrid planar–mixed heterojunction photovoltaic cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Efficient organic hybrid planar–mixed heterojunction photovoltaic cells based on copper phthalocyanine (CuPc) and fullerene (C60) were fabricated. This structure, in addition to the high efficiency in exciton diffusion of a mixed heterojunction, has low resistance in charge transporting of a planar heterojunction. The effects of different CuPc:C60 mixing ratios in two stages and by varying the CuPc and C60 thicknesses, respectively, were investigated. Also, we illustrate the charge transport mechanisms and specify the charge injection models for the cells. For the optimized cell, trap-charge-limited current (TCLC) model was dominant. MoO3 is one of the common materials as anodic buffer layer which is used for modifying the ITO electrode and improving the charge extraction. According to the AFM results, after depositing MoO3 layer on ITO, the surface root mean square (RMS) roughness decreases from 8.31 to 4.14 nm. Optimal thickness for both CuPc and C60 layers was obtained 20 nm. Finally, the greatest value in power conversion efficiency was achieved 3.81% using the 1:1 CuPc:C60 mixing ratio. Moreover, short-circuit current density (Jsc), fill factor (FF), and open-circuit voltage (Voc) for this optimized cell were found 10.21 (mA/cm2), 0.64 (V), and 0.58, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Reshma, K. Santhakumar, Org. Electron. 47, 43 (2017)

    Article  Google Scholar 

  2. G. Chen, C. Si, P. Zhang, B. Wei, J. Zhang, Z. Hong, H. Sasabe, J. Kido, Org. Electron. 51, 69 (2017)

    Article  Google Scholar 

  3. X. Guo, L. Xiao, W. Tang, B. Liu, R. Cui, Y. Zou, J. Mater. Sci. 48, 5839 (2013)

    Google Scholar 

  4. R. Scaria, F. Ali, S. Dhawan, S. Chand, J. Mater. Sci. 50, 562 (2015)

    Article  Google Scholar 

  5. D. Ompong, M. Narayan, J. Singh, J. Mater. Sci. Mater. Electron. 28, 7106 (2017)

    Article  Google Scholar 

  6. X. Zhu, C. Gao, M. Xu, W. Gu, X. Shi, Y. Lei, Z. Wang, L. Liao, Synth. Methods 162, 2215 (2012)

    Google Scholar 

  7. N.S. Sabri, C.C. Yap, M. Yahaya, M.M. Salleh, J. Mater. Sci. Mater. Electron. 24, 2188 (2013)

    Article  Google Scholar 

  8. P. Lopez-Varo, J.A. Jimenez-Tejada, O. Marinov, J. Carceller, C. Chen, M. Deen, Org. Electron. 48, 95 (2017)

    Article  Google Scholar 

  9. F. Chang, H. Li, B. Zheng, K. Qian, Q. Lei, G. Han, Y. Song, P. Shao, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8041-9

    Google Scholar 

  10. S. Sun, Z. Fan, Y. Wang, J. Haliburton, J. Mater. Sci. 40, 1443 (2005)

    Google Scholar 

  11. J. Sun, Q. Zheng, S. Cheng, H. Zhou, Y. Lai, J. Yu, J. Mater. Sci. Mater. Electron. 27, 3249 (2016)

    Google Scholar 

  12. T. Adhikari, J.M. Nunzi, O. Lebel, Org. Electron. 49, 392 (2017)

    Article  Google Scholar 

  13. J. Sakai, T. Taima, K. Saito, Org. Electron. 9, 590 (2008)

    Article  Google Scholar 

  14. S. Han, W.S. Shin, M. Seo, D. Gupta, S.J. Moon, S. Yoo, Org. Electron. 10, 797 (2009)

    Article  Google Scholar 

  15. F. Qiao, A. Liu, Y. Zhou, Y. Xiao, P.O. Yang, J. Mater. Sci. 44, 1286 (2009)

    Google Scholar 

  16. P.W. Blom, V.D. Mihailetchi, L.J.A. Koster, D.E. Markov, Adv. Mater. 19, 1566 (2007)

    Article  Google Scholar 

  17. S. Yu, A. Opitz, S. Grob, R. Resel, M. Oehzelt, W. Brütting, I. Salzmann, N. Koch, Org. Electron. 15, 2217 (2014)

    Google Scholar 

  18. M. Kikuchi, K. Takagi, H. Naito, M. Hiramoto, Org. Electron. 41, 121 (2017)

    Article  Google Scholar 

  19. S. Kumar, D. Panigrahi, A. Dhar, Org. Electron. 38, 7 (2016)

    Article  Google Scholar 

  20. B.P. Rand, J. Xue, S. Uchida, S.R. Forrest, J. Appl. Phys. 98, 124902 (2005)

    Article  Google Scholar 

  21. M. Hssein, L. Cattin, M. Morsli, M. Addou, J. Bernède, J. Mater. Sci. Mater. Electron. 28, 3684 (2017)

    Article  Google Scholar 

  22. J. Xue, B.P. Rand, S. Uchida, S.R. Forrest, J. Appl. Phys. 98, 124903 (2005)

    Article  Google Scholar 

  23. S. Ghasemi, M.G. Varnamkhasti, E. Shahriari, Opt. Quantum. Electron. 49, 62 (2017)

    Article  Google Scholar 

  24. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2787 (2008)

    Article  Google Scholar 

  25. L.G. Gerling, S. Mahato, C. Voz, R. Alcubilla, J. Puigdollers, Appl. Sci. 5, 705 (2015)

    Article  Google Scholar 

  26. X. Xi, Q. Meng, F. Li, Y. Ding, J. Ji, Z. Shi, G. Li, Sol. Energy Mater. Sol. C 94, 628 (2010)

    Google Scholar 

  27. M.Y. Ameen, S. Pradhan, M.R. Suresh, V. Reddy, Opt. Mater. 39, 139 (2015)

    Google Scholar 

  28. D.W. Chou, C.J. Huang, T.C. Wang, W.R. Chen, T.H. Meen, J. Non-Cryst. Solids 356, 2161 (2010)

    Article  Google Scholar 

  29. G. Sarasqueta, F. So, Sol. Energy Mater. Sol. C 93, 1456 (2009)

    Google Scholar 

  30. V. Kazukauskas, A. Arlauskas, M. Pranaitis, R. Lessmann, M. Riede, K. Leo, Opt. Mater. 32, 1680 (2010)

    Google Scholar 

  31. M.M. Bidgoli, M. Mohsennia, F.A. Boroumand, A.M. Nia, Semicond. Sci. Tech. 30, 065016 (2015)

    Article  Google Scholar 

  32. F. Schauer, Sol. Energy Mater. Sol. C 87, 250 (2005)

    Article  Google Scholar 

  33. S. Nespurek, O. Zmeskal, J. Sworakowski, Thin Solid Films. 516, 8962 (2008)

    Article  Google Scholar 

  34. K.C. Aw, P.C. Ooi, K.A. Razak, W. Gao, J. Mater. Sci. Mater. Electron. 24, 3125 (2013)

    Article  Google Scholar 

  35. M. Bajpai, R. Srivastava, R. Dhar, R. Tiwari, Mater. Sci. Eng B 212, 70 (2016)

    Article  Google Scholar 

  36. G.G. Raju, Dielectrics in Electric Fields (CRC Press, New York, 2003)

    Book  Google Scholar 

  37. M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, R. Ghasemi, A. Hassanzadeh, Sol. Energy Mater. Sol. C 98, 384 (2012)

    Google Scholar 

  38. Y. Li, H. Yu, X. Huang, Z. Wu, M. Chen, RSC. Adv. 7, 7900 (2017)

    Google Scholar 

  39. F. So, Organic Electronics: Materials, Processing, Devices and Applications (CRC Press, Boston, 2009)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Nanotechnology Research Center of Shahrekord University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S., Ghasemi, M. The effects of mixture ratios of CuPc:C60 in nanostructured organic hybrid planar–mixed heterojunction photovoltaic cells. J Mater Sci: Mater Electron 29, 11124–11131 (2018). https://doi.org/10.1007/s10854-018-9196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9196-8

Navigation