Skip to main content
Log in

Electrospun Sn–SnO2/C composite nanofibers as an anode material for lithium battery applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–SnO2/C composite nanofibers were prepared by electrospinning method using polyvinyl alcohol as a polymeric agent. X-ray diffraction results of Sn–SnO2/C composite nanofibers confirm the formation of nanocrystalline metallic Tin (Sn) and tetragonal rutile like SnO2. FE-SEM images also showed more void spaces interconnected three-dimensionally in the Sn–SnO2/C composite nanofibers. FE-SEM–EDAX spectra of spherical shape nanoparticles over and inside the nanofibers are confirmed respectively, due to the formation of SnO2 (Sn & O elements) and Sn (Sn element). The charge–discharge results of the newly developed lithium batteries showed a high discharge capacity of 445.2 mAh g−1 and retained the same even after the 30th cycle at a current density of 150 mA g−1. The newly developed lithium batteries also showed the good capacity retention and rate capability. Hence, the electrochemical properties indicate that the newly developed electrospun Sn–SnO2/C composite nanofibers may be a better anode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Wang, P. Gao, S. Lu, H. Liu, G. Yang, J. Pinto, X. Jiang, The effect of tin content to the morphology of Sn/carbon nanofiber and the electrochemical performance as anode material for lithium batteries. Electrochim. Acta 58, 44–51 (2011)

    Article  Google Scholar 

  2. L.-J. Xue, Y.-F. Xu, L. Huang, F.-S. Ke, Y. He, Y.-X. Wang, G.-Z. Wei, J.-T. Li, S.-G. Sun, Lithium storage performance, and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochim. Acta 56, 5979–5987 (2011)

    Article  Google Scholar 

  3. J. Hassoun, G. Derrien, S. Panero, B. Scrosati, A nanostructured Sn–C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 20, 3169–3175 (2008)

    Article  Google Scholar 

  4. X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties. Chem. Mater. 20, 6562–6566 (2008)

    Article  Google Scholar 

  5. W. Choi, J.Y. Lee, B.H. Jung, H.S. Lim, Microstructure and electrochemical properties of a nanometer-scale tin anode for lithium secondary batteries. J. Power Sources 136, 154–159 (2004)

    Article  Google Scholar 

  6. J. Read, D. Foster, J. Wolfenstine, W. Behl, SnO 2-carbon composites for lithium-ion battery anodes. J. Power Sources 96, 277–281 (2001)

    Article  Google Scholar 

  7. Y. Zhang, Q. Xiao, G. Lei, Z. Li, X. Li, Design and synthesis of SnO2 nanosheets/nickel/polyvinylidene fluoride ternary composite as free-standing, flexible electrode for lithium ion batteries. Electrochim. Acta 178, 336–343 (2015)

    Article  Google Scholar 

  8. O. Mao, R. Dunlap, J. Dahn, Mechanically alloyed Sn–Fe (−C) powders as anode materials for Li-Ion batteries: I. The Sn2Fe-C system. J. Electrochem. Soc. 146, 405–413 (1999)

    Article  Google Scholar 

  9. H. Li, L. Shi, W. Lu, X. Huang, L. Chen, Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries. J. Electrochem. Soc. 148, A915–A922 (2001)

    Article  Google Scholar 

  10. Y. Wang, M. Wu, Z. Jiao, J.Y. Lee, Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 21, 3210–3215 (2009)

    Article  Google Scholar 

  11. M. Winter, J.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31–50 (1999)

    Article  Google Scholar 

  12. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. 119, 764–767 (2007)

    Article  Google Scholar 

  13. Y. Hu, Q.-R. Yang, J. Ma, S.-L. Chou, M. Zhu, Y. Li, Sn/SnO2@C composite nanofibers as an advanced anode for lithium-ion batteries. Electrochim. Acta 186, 271–276 (2015)

    Article  Google Scholar 

  14. Y. Wang, J.Y. Lee, H.C. Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17, 3899–3903 (2005)

    Article  Google Scholar 

  15. S. Yang, H. Song, X. Chen, Nanosized tin and tin oxides loaded expanded mesocarbon microbeads as negative electrode material for lithium-ion batteries. J. Power Sources 173, 487–494 (2007)

    Article  Google Scholar 

  16. I. Kim, G. Blomgren, P. Kumta, Sn/C composite anodes for Li-ion batteries. Electrochem. Solid-State Lett. 7, A44–A48 (2004)

    Article  Google Scholar 

  17. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 19, 2336–2340 (2007)

    Article  Google Scholar 

  18. D. Hall, A. Wang, K. Joy, T. Miller, M. Wooldridge, Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnOx, x = 0–2) particles. J. Am. Ceram. Soc. 87, 2033–2041 (2004)

    Article  Google Scholar 

  19. Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M.R. Zachariah, C. Wang, Uniform nano-Sn/C composite anodes for lithium-ion batteries. Nano Lett. 13, 470–474 (2013)

    Article  Google Scholar 

  20. M.S. Peresin, Y. Habibi, J.O. Zoppe, J.J. Pawlak, O.J. Rojas, Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromol 11, 674–681 (2010)

    Article  Google Scholar 

  21. J.-C. Park, T. Ito, K.-O. Kim, K.-W. Kim, B.-S. Kim, M.-S. Khil, H.-Y. Kim, I.-S. Kim, Electrospun poly(vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polym. J. 42, 273 (2010)

    Article  Google Scholar 

  22. Z. Shen, Y. Hu, Y. Chen, R. Chen, X. He, X. Zhang, H. Shao, Y. Zhang, Controllable synthesis of carbon-coated Sn–SnO2–carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochim. Acta 188, 661–670 (2016)

    Article  Google Scholar 

  23. J. Hwang, S.H. Woo, J. Shim, C. Jo, K.T. Lee, J. Lee, One-pot synthesis of tin-embedded carbon/silica nanocomposites for anode materials in lithium-ion batteries. ACS Nano 7, 1036–1044 (2013)

    Article  Google Scholar 

  24. C. Liu, H. Huang, G. Cao, F. Xue, R.A.P. Camacho, X.-l. Dong, Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim. Acta 144, 376–382 (2014)

    Article  Google Scholar 

  25. J. Chen, L. Yang, S. Fang, S. Hirano, Ordered mesoporous Sn–C composite as an anode material for lithium ion batteries. Electrochem. Commun. 13, 848–851 (2011)

    Article  Google Scholar 

  26. G. Wang, Y. Ma, Z. Liu, J. Wu, Novel highly porous Sn–C composite as high performance anode material for lithium-ion batteries. Electrochim. Acta 65, 275–279 (2012)

    Article  Google Scholar 

  27. X. Tao, R. Wu, Y. Xia, H. Huang, W. Chai, T. Feng, Y. Gan, W. Zhang, Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl. Mater. Interfaces 6, 3696–3702 (2014)

    Article  Google Scholar 

  28. G.A. Elia, S. Panero, A. Savoini, B. Scrosati, J. Hassoun, Mechanically milled, nanostructured Sn C composite anode for lithium ion battery. Electrochim. Acta 90, 690–694 (2013)

    Article  Google Scholar 

  29. C. Li, X. Yin, L. Chen, Q. Li, T. Wang, Porous carbon nanofibers derived from conducting polymer: synthesis and application in lithium-ion batteries with high-rate capability. J. Phys. Chem. C 113, 13438–13442 (2009)

    Article  Google Scholar 

  30. L. Zou, L. Gan, F. Kang, M. Wang, W. Shen, Z. Huang, Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. J. Power Sources 195, 1216–1220 (2010)

    Article  Google Scholar 

  31. D. Wang, X. Li, J. Yang, J. Wang, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Phys. Chem. Chem. Phys. 15, 3535–3542 (2013)

    Article  Google Scholar 

  32. Q. Tian, Z. Zhang, J. Chen, L. Yang, S. Hirano, Carbon nanowires@ ultrathin SnO2 nanosheets@ carbon composite and its lithium storage properties. J. Power Sources 246, 587–595 (2014)

    Article  Google Scholar 

  33. K.E. Aifantis, T. Huang, S.A. Hackney, T. Sarakonsri, A. Yu, Capacity fade in Sn–C nanopowder anodes due to fracture. J. Power Sources 197, 246–252 (2012)

    Article  Google Scholar 

  34. D. Narsimulu, S. Vinoth, E.S. Srinadhu, N. Satyanarayana, Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications. Ceram. Int. 44, 201–207 (2018)

    Article  Google Scholar 

  35. R. Hu, M. Zhu, H. Wang, J. Liu, O. Liuzhang, J. Zou, Sn buffered by shape memory effect of NiTi alloys as high-performance anodes for lithium ion batteries. Acta Mater. 60, 4695–4703 (2012)

    Article  Google Scholar 

  36. R. Hu, H. Zhang, J. Liu, D. Chen, L. Yang, M. Zhu, M. Liu, Deformable fibrous carbon supported ultrafine nano-SnO2 as a high volumetric capacity and cyclic durable anode for Li storage. J. Mater. Chem. A 3, 15097–15107 (2015)

    Article  Google Scholar 

  37. D. Narsimulu, B. Nageswara Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electrical and electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42, 16789–16797 (2016)

    Article  Google Scholar 

  38. D. Narsimulu, O. Padmaraj, E.S. Srinadhu, N. Satyanarayana, Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. J. Mater. Sci.: Mater. Electron. 28, 17208–17214 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Satyanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narsimulu, D., Vadnala, S., Srinadhu, E.S. et al. Electrospun Sn–SnO2/C composite nanofibers as an anode material for lithium battery applications. J Mater Sci: Mater Electron 29, 11117–11123 (2018). https://doi.org/10.1007/s10854-018-9195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9195-9

Navigation