Skip to main content
Log in

Screen printed PEDOT:PSS films as transparent electrode and its application in organic solar cells on opaque substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we demonstrate screen printing, a low cost printing method, of PEDPOT:PSS as top transparent electrode which was integrated with organic solar cell devices fabricated on opaque steel substrates with device structure being Steel/Insulator/Al/ZnO/P3HT:PC61BM/PEDOT:PSS. To print PEDOT:PSS on the surface of hydrophobic active layer of P3HT:PC61BM, PEDOT:PSS is modified with isopropyl alcohol (IPA) and Fluorosurfactant Zonyl FS-300. Further, two-step annealing of screen printed PEDOT:PSS films, 50 °C for 5 min and then at 130 °C for 3 min, is found to be crucial in rendering low surface roughness. Adoption of these strategies together yielded PEDOT:PSS films of thickness in the range of 500–700 nm consistently with a roughness of ca. 55 nm. These PEDOT:PSS films were coupled with silver (Ag) grids in organic solar cell devices which yielded power conversion efficiency of ca. 0.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energ. Mater. Sol. Cells 93, 394–412 (2009)

    Article  Google Scholar 

  2. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 1–2 (2012)

    Article  Google Scholar 

  3. M. Manceau, D. Angmo, M. Jørgensen, F.C. Krebs, ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules. Org. Electron. 12, 566–574 (2011)

    Article  Google Scholar 

  4. S. Jung, A. Sou, K. Banger, D.H. Ko, P.C.Y. Chow, C.R. McNeill, H. Sirringhaus, All-inkjet-printed, all-air-processed solar cells. Adv. Energy Mater 4, 1400432 (2014)

    Article  Google Scholar 

  5. T.M. Eggenhuisen, Y. Galagan, A.F.K.V. Biezemans, T.M.W.L. Slaats, W.P. Voorthuijzen, S. Kommeren, S. Shanmugam, J.P. Teunissen, A. Hadipour, W.J.H. Verhees, S.C. Veenstra, M.J.J. Coenen, J. Gilot, R. Andriessen, W.A. Groen, A high efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A3, 7255–7262 (2015)

    Article  Google Scholar 

  6. A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Printed paper photovoltaic cells. Adv. Energy Mater. 1, 1018–1022 (2011)

    Article  Google Scholar 

  7. M.M. Voigt, R.C. Mackenzie, S.P. King, C.P. Yau, P. Atienzar, J. Dane, P.E. Keivanidis, I. Zadrazil, D.D. Bradley, J. Nelson, Gravure printing inverted organic solar cells: the influence of ink properties on film quality and device performance. Sol. Energy Mater. Sol. Cells 105 77–85 (2012)

    Article  Google Scholar 

  8. F.V. Krebs, M. Jørgensen, K. Norrmana, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing: first public demonstration. Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)

    Article  Google Scholar 

  9. H. Hannebauer, T. Falcon, R. Hesse, T. Dullweber, R. Brendel, 18.9% efficient screen printed solar cell applying a print on print process, 26th European Photovoltaic Solar Energy Conference and Exhibition (2011)

  10. J. Kim, N. Duraisamy, T.-M. Lee, I. Kim, K.-H. Choi, Screen printed silver top electrode for efficient inverted organic solar cells. Mater. Res. Bull. 70, 412–415 (2015)

    Article  Google Scholar 

  11. D.A. Pardo, G.E. Jabbour, N. Peyghambarian, Application of screen printing in the fabrication of organic light emitting. Adv. Mater. 12(17), 1249–1252 (2000)

    Article  Google Scholar 

  12. F. Jonas, W. Krafft, B. Muys, Poly(3,4-ethylenedioxythiophene): conductive coatings, technical applications and properties. Macromol. Symp. 100, 169–173 (1995)

    Article  Google Scholar 

  13. S.E Shaheen, C.J. Brabec, N. Sariciftci, 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78(6), 841–843 (2001)

    Article  Google Scholar 

  14. Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT PSS electrode with optimized solvent and thermal post treatment for ITO free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011)

    Article  Google Scholar 

  15. Z. Xiong, C. Liu, Optimization of inkjet printed PEDOT:PSS thin films through annealing processes. Org. Electron. 13, 1532–1540 (2012)

    Article  Google Scholar 

  16. Y. Kim, A.M. Ballantyne, J. Nelson, D.D. Bradley, Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells. Org. Electron. 10, 205–209 (2009)

    Article  Google Scholar 

  17. J.Y. Kim, J.H. Jung, D.E. Lee, J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Methods 126, 311–316 (2002)

    Article  Google Scholar 

  18. A. Keawprajak, W. Koetniyom, P. Piyakulawat, K. Jiramitmongkon, S. Pratontep, U. Asawapirom, Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT:PSS film and performance of polymer photovoltaic cells. Org. Electron. 14, 402–410 (2013)

    Article  Google Scholar 

  19. H. Yan, T. Jo, H. Okuzaki, Highly conductive and transparent poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) thin films. Polymer 41(No. 12), 1028–1029 (2009)

    Article  Google Scholar 

  20. O.P. Dimitriev, D.A. Grinko, Yu..V. Noskov, N.A. Ogurtsov, A.A. Pud, PEDOT:PSS films—effect of organic solvent additives and annealing on the film conductivity. Synth. Methods 159, 2237–2239 (2009)

    Article  Google Scholar 

  21. O.P. Dimitriev, D.A. Grinko, Y.V. Noskov, N.A. Ogurtsov, A.A. Pud, PEDOT:PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells. ACS Appl. Mater. Interfaces 8, 11629–11638 (2016)

    Article  Google Scholar 

  22. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)

    Article  Google Scholar 

  23. J. Jo, J. Na, B.-K. Yu, D.-Y. Kim, Time-dependent morphology evolution by annealing processes on polymer:fullerene blend solar cells. Adv. Funct. Mater. 19, 866–874 (2009)

    Article  Google Scholar 

  24. F.C. Krebs, T. Tromholt, M. Jørgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873–886 (2010)

    Article  Google Scholar 

  25. F.C. Krebs, All solution roll-to-roll processed polymer solar cells free ITO and vacuum coating steps. Org. Electron. 10, 761–768 (2009)

    Article  Google Scholar 

  26. F.C. Krebs, Roll-to-roll fabrication of monolithic large-area polymer solar cells free from indium-tin-oxide. Sol. Energ. Mater. Sol. Cells 93, 1636–1641 (2009)

    Article  Google Scholar 

  27. A. Singh, M. Katiyar, A. Garg, Understanding the formation of PEDOT:PSS films by ink-jet printing for organic solar cell applications. RSC Adv. 5, 78677 (2015)

    Article  Google Scholar 

  28. J.G. Tait, Brian, B.J. Worfolk, S.A. Maloney, T.C. Hauger, A.L. Elias, J.M. Buriak, K.D. Harris, Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol. Energy Mater. Sol. Cells 110, 98–106 (2013)

    Article  Google Scholar 

  29. T.-C. Wei, J.-L. Lan, C.-C. Wan, W.-C. Hsu, Y.-H. Chang, Fabrication of grid type dye sensitized solar modules with 7% conversion efficiency by utilizing commercially available materials. Prog. Photovolt. Res. Appl. 21, 1625–1633 (2013)

    Article  Google Scholar 

  30. G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J.L. Marty, T. Noguer, Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): a new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta 82, 957–961 (2010)

    Article  Google Scholar 

  31. A. Hobby, Fundamentals of screens for electronics screen printing. Circuit World 16, 4 (1990)

    Article  Google Scholar 

  32. S.H. Eom, S. Senthilarasu, P. Uthirakumar, S.C. Yoon, J. Lim, C. Lee, J. Lim, S.-H. Lee, Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org. Electron. 10, 536–542 (2009)

    Article  Google Scholar 

  33. D. Gupta, M. Wienk, R.A.J. Janssen, Indium tin oxide-free tandem polymer solar cells on opaque substrates with top illumination. ACS Appl. Mater. Interfaces 6, 13937–13944 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from Department of Science and Technology, India though DST-RCUK APEX Grant (Phase I and II). We thank Tata Steel (Europe) for providing the steel substrates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sowjanya Pali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pali, L.S., Jindal, R. & Garg, A. Screen printed PEDOT:PSS films as transparent electrode and its application in organic solar cells on opaque substrates. J Mater Sci: Mater Electron 29, 11030–11038 (2018). https://doi.org/10.1007/s10854-018-9185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9185-y

Navigation