Skip to main content
Log in

Effects of transition metal ions on the electrochemical performance of polypyrrole electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three transition metal ions (Ni2+, Fe2+ and Cu2+)were chosen as dopants to fabricate PPy/M2+ (M:Ni2+, Fe2+ and Cu2+) electrodes by cyclic voltammetry on the stainless steel wire mesh. Fourier transform infrared, X-ray diffraction, Scanning electron microscopy and X-ray photoelectron spectroscopy techniques were employed to characterize the structure and morphology of PPy/M2+. The results prove that there are some changes in microstructure and valence of transition metal ions. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy tests in 1.0 mol L−1 HNO3 electrolyte in three-electrode system exhibit that the larger specific capacitance of PPy/M2+ electrodes are 517, 679 and 764 F g−1 at a current density of 5 mA cm−2 and the capacitance’ retention is 80.5, 82.7 and 83.8% after 1000 cycles. Besides, it was found that the different electrochemical properties of PPy/M2+ electrodes related to different ionic nature, such as ionic potential and ionic radius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Press, New York, 1999)

    Google Scholar 

  2. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537–1541 (2011)

    Article  Google Scholar 

  3. R.K. Selvan, I. Perelshtein, N. Perkas, A. Gedanken, J. Phys. Chem. C 112, 1825–1830 (2008)

    Article  Google Scholar 

  4. X. Du, X. Hao, Z. Wang, X. Ma, G. Guan, A. Abuliti, G. Ma, S. Liu, Synth. Methods 175, 138–145 (2013)

    Article  Google Scholar 

  5. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak, ACS Appl. Mater. Int. 347, 36–40 (2001)

    Google Scholar 

  6. Y.L. Zhu, K.Y. Shi, I. Zhitomirsky, J. Power Sources 268, 233–239 (2014)

    Article  Google Scholar 

  7. S. Yang, P. Yan, Y. Li, K. Ye, K. Cheng, D. Cao, G. Wang, Q. Li, Electrochim. Acta 182, 1153–1158 (2015)

    Article  Google Scholar 

  8. R. Yuksel, E. Alpugan, H.E. Unalan, Org. Electron. 52, 272–280 (2018)

    Article  Google Scholar 

  9. S. Dhibar, S. Sahoo, C.K. Das, J. Appl. Polym. Sci. 130(1), 554–562 (2013)

    Article  Google Scholar 

  10. H. Xu, J.X. Wu, C.L. Li, J.L. Zhang, J.Y. Liu, Electrochim. Acta 165, 14–21 (2015)

    Article  Google Scholar 

  11. F. Tavoli, N. Alizadeh, J. Electroanal. Chem. 746, 39–44 (2015)

    Article  Google Scholar 

  12. S. Shahrokhian, Z. Kamalzadeh, R.S. Saberi, Electroanalysis. 23, 2925–2934 (2011)

    Article  Google Scholar 

  13. K. Krukiewicz, A.P. Herman, R. Turczyn, K. Szymanska, K.K.K. Koziol, S. Boncel, J.K. Zak, Appl. Surf. Sci. 317, 794–802 (2014)

    Article  Google Scholar 

  14. S. Shahrokhian, Z. Kamalzadeh, A. Hamzehloei, Bioelectrochemistry 90, 36–43 (2013)

    Article  Google Scholar 

  15. A.G. Porras-Gutiérrez, B. Frontana-Uribe, S. Gutiérrez-Granados, S. Griveau, F. Bedioui, Electrochim. Acta 89, 840–847 (2013)

    Article  Google Scholar 

  16. Z. Mandic, L. Duic, F. Kovacicek, Electrochim. Acta 42, 1389 (1997)

    Article  Google Scholar 

  17. R.C. Del, N. Olivares, J.L. Acosta, Polym. Bull. 47(1), 65–70 (2001)

    Article  Google Scholar 

  18. H. Mi, X. Zhang, X. Ye, J. Power Sources 176(176), 403–409 (2008)

    Article  Google Scholar 

  19. T. Sun, H. Bi, K.R. Zhu, Spectrochim. Acta Part A 66, 1364 (2007)

    Article  Google Scholar 

  20. T. Uyar, L. Toppare, J. Hacaloğlu, Synth. Met. 123, 335–342 (2001)

    Article  Google Scholar 

  21. R. Taş, M. Gülen, M. Can, S. Sönmezoglu, Synth. Met. 212, 75–83 (2016)

    Article  Google Scholar 

  22. M. Ghorbani, H. Eisazadeh, Synth. Met. 162, 1429–1433 (2012)

    Article  Google Scholar 

  23. S. Sen, A. Gok, H. Gulce, J. Appl. Polym. Sci. 106, 3852–3860 (2007)

    Article  Google Scholar 

  24. A. Ehsani, M.G. Mahjani, M. Jafarian, A. Naeemy, Electrochim. Acta 71, 128–133 (2012)

    Article  Google Scholar 

  25. X.X. Li, Electrochim. Acta 54, 5634–5639 (2009)

    Article  Google Scholar 

  26. H. Xu, J.L. Li, Z.J. Peng, J.X. Zhuang, J.L. Zhang, Electrochim. Acta 90, 393–399 (2013)

    Article  Google Scholar 

  27. C.M. Yang, C.Y. Chen, Synth. Met. 153, 133–136 (2005)

    Article  Google Scholar 

  28. C.H. Liu, F. Wang, Q. Liang, J. Liu, Z.D. Chen, S.D. Wang, Ceram. Int. 42, 17916–17919 (2016)

    Article  Google Scholar 

  29. N. Anwar, M. Vagin, F. Laffir, G. Armstrong, C. Dickinson, T. McCormac, Analyst 137, 624–630 (2012)

    Article  Google Scholar 

  30. Z.Q. Liu, Q.Z. Xu, J.Y. Wang, N. Li, S.H. Guo, Y.Z. Su, H.J. Wang, J.H. Zhang, S. Chen, Int. J. Hydrog. Energy 38, 6657–6662 (2013)

    Article  Google Scholar 

  31. J. Xiao, S. Yang, J. Mater. Chem. 22, 12253–12262 (2012)

    Article  Google Scholar 

  32. B.A. Reguig, M. Regragui, M. Morsli, A. Khelil, M. Addou, J.C. Bernede, Sol Energy Mater. Sol C 90, 1381–1392 (2006)

    Article  Google Scholar 

  33. H. Xu, J.L. Zhang, Y. Chen, H.L. Lu, J.X. Zhuang, RSC. Adv. 4, 5547–5552 (2014)

    Article  Google Scholar 

  34. P.B. Liu, Y. Huang, X. Zhang, Mater. Lett. 136, 298–301 (2014)

    Article  Google Scholar 

  35. W. Prissanaroon, N. Brack, P.J. Pigram, J. Liesegang, T.J. Cardwell, Surf. Interface Anal. 33, 653 (2002)

    Article  Google Scholar 

  36. Y.C. Liu, K.C. Chung, Synth. Met. 139, 277–281 (2003)

    Article  Google Scholar 

  37. L. Gu, L. Qian, Y. Lei, Y.Y. Wang, J. Li, H.Y. Yuan, D. Xiao, J. Power Sources 261, 317–323 (2014)

    Article  Google Scholar 

  38. S. Chen, I. Zhitomirsky, Mater. Lett. 135, 47–50 (2014)

    Article  Google Scholar 

  39. A.Q. Zhang, L.Z. Wang, Y. Zhang, F.B. Shen, Battery Bimonthly 40, 10–12 (2010)

    Google Scholar 

  40. Q. Liu, X.X. Liu, C.D. Shi, Y.P. Zhang, X.T. Feng, M.L. Cheng, S. Su, J.D. Gu, Dalton Trans. 44(44), 19175–19184 (2015)

    Article  Google Scholar 

  41. Y. Tian, Y.B. Wu, L.P. Huang, F.L. Yang, J. Appl. Electrochem. 40, 427–433 (2010)

    Article  Google Scholar 

  42. C.L. Ho, M.S. Wu, J. Phys. Chem. C 115, 22068–22074 (2011)

    Article  Google Scholar 

  43. J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, Chem. Mater. 24, 1158–1164 (2012)

    Article  Google Scholar 

  44. Q. Lü, Microchim. Acta 168, 205–213 (2010)

    Article  Google Scholar 

  45. G.R. Li, Z.P. Feng, J.H. Zhong, Z.L. Wang, Y.X. Tong, Macromolecules 43, 2178–2183 (2010)

    Article  Google Scholar 

  46. P. Alemany, D. Casanova, S. Álvarez, Phys. Chem. Chem. Phys. 14, 11823–11886 (2012)

    Article  Google Scholar 

  47. J.Z. Fan, H.Y. Mi, Y.L. Xu, B. Gao, Mater. Res. Bull. 48, 1342–1345 (2013)

    Article  Google Scholar 

  48. D.D. Zhao, S.J. Bao, W.J. Zhou, H.L. Li, Electrochem. Commun. 9, 869–874 (2007)

    Article  Google Scholar 

  49. T.I.W. Schnoor, G. Smith, D. Eder, K.K.K. Koziol, G.T. Burstein, A.H. Windle, K. Schulte, Carbon 60, 229–235 (2013)

    Article  Google Scholar 

  50. T. Yan, Z.J. Li, R.Y. Li, Q. Ning, H. Kong, Y.L. Niu, J.K. Liu, J. Mater. Chem. 22, 23587–23592 (2012)

    Article  Google Scholar 

  51. K. Shi, I. Zhitomirsky, J. Power Sources 240, 42–49 (2013)

    Article  Google Scholar 

  52. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Béguin, J. Power Sources 153, 413–418 (2006)

    Article  Google Scholar 

  53. Y. Chen, G.Y. Kang, H. Xu, L. Kang, Russ. J. Electrochem. 53(4), 359–365 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (No. 51503092 and 51663014), the Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1606RJIA322) and the Natural Science Foundation of Gansu Province (No. 061707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, J., Zhang, X. et al. Effects of transition metal ions on the electrochemical performance of polypyrrole electrode. J Mater Sci: Mater Electron 29, 11020–11029 (2018). https://doi.org/10.1007/s10854-018-9184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9184-z

Navigation