Skip to main content
Log in

The effects of doping type on structural and electrical properties of silicon nanocrystals layers grown by plasma enhanced chemical vapor deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to compare the influence of boron and phosphor doping on the optical, structural and electrical properties of hydrogenated amorphous silicon (a-Si:H) thin films elaborated at low radiofrequency power and low hydrogen dilution. Structural properties of deposited films were investigated by scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD) and Raman spectroscopy. The SEM analysis shows that the best homogeneity is observed in the layer doped with low diborane flow rate. Reflectance, XRD and Raman measurements show that the doping of thin films induces the formation of nanocrystallites (nc-Si) embedded in the amorphous matrix with higher density in the phosphorus-doped layers compared to those of boron-doped one. The temperature dependent electrical properties of Au/a-Si:H Schottky diodes were investigated using current–voltage characteristics (I–V), admittance spectroscopy technique and capacitance–voltage characteristics [C(V)] in the temperature range of 100–400 K. From the I–V analyses based on thermionic emission (TE) theory we notice the heterogeneity of the barrier height of the Schottky diodes. From the electrical conductivity measurements, we plotted the evolution of the logarithm of the conductivity σ·T as a function of 1000/T. Activation energies \({\text{E}}_{{\text{a}}}^{{{\text{Low}}}}\) and \({\text{E}}_{{\text{a}}}^{{{\text{High}}}}\) of the samples in low and high temperature ranges respectively are estimated. The decrease of \({\text{E}}_{{\text{a}}}^{{{\text{Low}}}}\) with increasing boron flow rate is attributed to an increase in the density of the traps in the band gap of silicon. On the other hand, we found that \({\text{E}}_{{\text{a}}}^{{{\text{High}}}}\)increases when the flow rate of boron increases and decreases when the flow rate of phosphorus increases. We attributed these behaviors to the increase in the crystallinity of the n-type layers and to the presence of a deep defect in the p-type layers. C−2(V) plots show the presence of two linear regions. We found that the response of the nanocrystalline phase becomes more pronounced at high doping flow rate. Optical, structural and electrical measurements confirmed that the type and the density of doping are important parameters that influence the electrical properties of nc-Si:H Schottky diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.T. Tan, T. Kamiya, Z.A.K. Durrani, H. Ahmed, J. Appl. Phys. 94, 633 (2003)

    Article  Google Scholar 

  2. I.C. Cheng, S. Wagner, Appl. Phys. Lett. 80, 440 (2002)

    Article  Google Scholar 

  3. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)

    Article  Google Scholar 

  4. K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  5. A.M. Funde, N.A. Bakr, D.K. Kamble, R.R. Hawaldar, D.P. Amalnerkar, S.R. Jadkar, Sol. Energy Mater. Sol. Cells 92, 1217 (2008)

    Article  Google Scholar 

  6. S.B. Amor, R. Bousbih, R. Ouertani, W. Dimassi, H. Ezzaouia, Sol. Energy 103, 12 (2014)

    Article  Google Scholar 

  7. S. Mukhopadhyay, A. Chowdhury, S. Ray, Thin Solid Films 516, 6824 (2008)

    Article  Google Scholar 

  8. L.Q. Guo, J. Ding, J. Yang, Z. Ling, G. Cheng, N. Yuan, S. Wang, Vacuum 85, 649 (2011)

    Article  Google Scholar 

  9. Z. Ni, X. Pi, M. Ali, S. Zhou, T. Nozaki, D. Yang, J. Phys. D 48, 314006 (2015)

    Article  Google Scholar 

  10. A.R. Stegner, R.N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, M.S. Brandt, Phys. Rev. B 80, 165326 (2009)

    Article  Google Scholar 

  11. S.A. Filonovich, H. Águas, I. Bernacka-Wojcik, C. Gaspar, M. Vilarigues, L.B. Silva, E. Fortunato, R. Martins, Vacuum 83, 1253 (2009)

    Article  Google Scholar 

  12. C. Song, J. Xu, G. Chen, H. Sun, Y. Liu, W. Li, L. Xu, Z. Ma, K. Chen, Appl. Surf. Sci. 257, 1337 (2010)

    Article  Google Scholar 

  13. C. Song, J. Xu, Q. Wang, G. Zha, W. Li, K. Chen, Solid State Commun. 151, 697 (2011)

    Article  Google Scholar 

  14. A.M. Funde, V.S. Waman, M.M. Kamble, M.R. Pramod, S.P. Gore, G.R. Roze, V.G. Sathe, S.W. Gosavi, S.R. Jadkar, Energy Procedia 15, 229 (2012)

    Article  Google Scholar 

  15. N. Elarbi, R. Jemai, A. Outzourhit, K. Khirouni, Appl. Phys. A 122, 566 (2016)

    Article  Google Scholar 

  16. F. Chaibi, R. Jemai, H. Aguas, H. Khemakhem, K. Khirouni, J. Mater. Sci. 53, 3672 (2018)

    Article  Google Scholar 

  17. J. Huang, L. Wang, H. Sun, H. Wang, M. Gao, W. Cheng, Z. Chen, Mater. Sci. Semicond. Process. 47, 7 (2016)

    Article  Google Scholar 

  18. N. Elghoul, S. Kraiem, R. Jemai, B. Zebentout, K. Khirouni, Mater. Sci. Semicond. Process. 40, 302 (2015)

    Article  Google Scholar 

  19. C. Baldus-Jeursen, R.S. Tarighat, S. Sivoththaman, Thin Solid Films 603, 212 (2016)

    Article  Google Scholar 

  20. S.B. Amor, H. Meddeb, R. Daik, A.B. Othman, S.B. Slama, W. Dimassi, H. Ezzaouia, Appl. Surf. Sci. 360, 572 (2016)

    Article  Google Scholar 

  21. H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)

    Article  Google Scholar 

  22. H. Fujiwara, Y. Toyoshima, M. Kondo, A. Matsuda, Phys. Rev. B 60, 13598 (1999)

    Article  Google Scholar 

  23. A. Matsuda, Thin Solid Films 337, 1 (1999)

    Article  Google Scholar 

  24. C.S. Jiang, B. Yan, Y. Yan, C.W. Teplin, R. Reedy, H.R. Moutinho, M.M. Al-Jassim, J. Yang, S. Guha, J. Non-Cryst. Solids 354, 2276 (2008)

    Article  Google Scholar 

  25. B. Yan, C.S. Jiang, C.W. Teplin, H.R. Moutinho, M.M. Al-Jassim, J. Yang, S. Guha, J. Appl. Phys. 101, 033712 (2007)

    Article  Google Scholar 

  26. C.S. Jiang, B. Yan, Y. Yan, C.W. Teplin, R. Reedy, H.R. Moutinho, M.M. Al-Jassim, J. Yang, J. Appl. Phys. 103, 063515 (2008)

    Article  Google Scholar 

  27. L.R. Dahal, J. Li, J.A. Stoke, Z. Huang, A. Shan, A.S. Ferlauto, C.R. Wronski, R.W. Collins, N.J. Podraza, Sol. Energy Mater. Sol. Cells 129, 32 (2014)

    Article  Google Scholar 

  28. D.J. Rowe, J.S. Jeong, K.A. Mkhoyan, U.R. Kortshagen, Nano Lett. 13, 1317 (2013)

    Article  Google Scholar 

  29. C. Song, X. Wang, R. Huang, J. Song, Y. Guo, Mater. Chem. Phys. 142, 292 (2013)

    Article  Google Scholar 

  30. A. Portavoce, Scr. Mater. 99, 37 (2015)

    Article  Google Scholar 

  31. K. Sato, N. Fukata, K. Hirakuri, Appl. Phys. Lett. 94, 161902 (2009)

    Article  Google Scholar 

  32. X.J. Hao, E.C. Cho, C. Flynn, Y.S. Shen, G. Conibeer, M.A. Green, Nanotechnology 19, 424019 (2008)

    Article  Google Scholar 

  33. R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 85 (2004)

    Article  Google Scholar 

  34. R. Henríquez, P. Grez, E. Muñoz, H. Gómez, J.A. Badán, R.E. Marotti, E.A. Dalchiele, Thin Solid Films 518, 1774 (2010)

    Article  Google Scholar 

  35. D. Gracin, K. Juraić, J. Sancho-Parramon, P. Dubček, S. Bernstorff, M. Čeh, Phys. Procedia 32, 470 (2012)

    Article  Google Scholar 

  36. P. Hapala, K. Kůsová, I. Pelant, P. Jelínek, Phys. Rev. B 87, 195420 (2013)

    Article  Google Scholar 

  37. C. Huh, T.Y. Kim, C.G. Ahn, B.K. Kim, The “Ninth International Conference on Quantum, Nano/Bio, and Micro Technologies, Venice, Italy, August 23–28, 2015” Curran Assoc. Inc, (2015) 5

  38. V.S. Waman, M.M. Kamble, S.S. Ghosh, A.H. Mayabadi, B.B. Gabhale, S.R. Rondiya, A.V. Rokade, S.S. Khadtare, V.G. Sathe, H.M. Pathan, S.W. Gosavi, S.R. Jadkar, J. Alloys Compd. 585, 523 (2014)

    Article  Google Scholar 

  39. V.S. Waman, A.M. Funde, M.M. Kamble, M.R. Pramod, R.R. Hawaldar, D.P. Amalnerkar, V.G. Sathe, S.W. Gosavi, S.R. Jadkar, J. Nanotechnol. 1 (2011) (2011)

  40. L. Guo, J. Ding, J. Yang, G. Cheng, Z. Ling, N. Yuan, Appl. Surf. Sci. 257, 9840 (2011)

    Article  Google Scholar 

  41. P. Gogoi, H.S. Jha, P. Agarwal, Thin Solid Films 518, 6818 (2010)

    Article  Google Scholar 

  42. H. Meddeb, T. Bearda, I. Abdelwahab, V. Ferro, B. O’Sullivan, Y. Abdulraheem, H. Ezzaouia, I. Gordon, J. Szlufcik, J. Poortmans, Energy Procedia 55, 818 (2014)

    Article  Google Scholar 

  43. R.G. Jasinevicius, J.G. Duduch, P.S. Pizani, J. Braz. Soc. Mech. Sci. Eng. 29, 49 (2007)

    Article  Google Scholar 

  44. V.A. Volodin, V.A. Sachkov, J. Exp. Theor. Phys. 116, 87 (2013)

    Article  Google Scholar 

  45. J. Gope, S. Kumar, A. Parashar, P.N. Dixit, C.M.S. Rauthan, O.S. Panwar, D.N. Patel, S.C. Agarwal, J. Non-Cryst. Solids 355, 2228 (2009)

    Article  Google Scholar 

  46. K. Nomoto, H. Sugimoto, A. Breen, A.V. Ceguerra, T. Kanno, S.P. Ringer, I.P. Wurfl, G. Conibeer, M. Fujii, J. Phys. Chem. C. 120, 17845 (2016)

    Article  Google Scholar 

  47. S.N. Agbo, P. Sutta, Dig. J. Nanomater. Bios. 8, 1461 (2013)

    Google Scholar 

  48. C. Weiss, S. Janz, M. Rumpel, M. Schnabel, P. Löper, Proceedings of the “28th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC, 2013, 30 September to 04 October 2013, Paris, France”. München, WIP-Renewable Energies, 2013, 387–391. https://doi.org/10.4229/28thEUPVSEC2013-1AV.3.3

  49. A. Kole, P. Chaudhuri, Thin Solid Films 522, 45 (2012)

    Article  Google Scholar 

  50. P. Scherrer, Göttinger Nachrichten Gesell 2, 98 (1918)

    Google Scholar 

  51. J. León, X. Perpiñà, M. Vellvehi, X. Jordà, P. Godignon, Solid-State Electron. 113, 35 (2015)

    Article  Google Scholar 

  52. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  53. X.Y. Gao, J.T. Zhao, Y.F. Liu, Q.G. Lin, Y.S. Chen, J.H. Gu, S.E. Yang, J.X. Lu, Acta Physi. Pol. A 115, 738 (2009)

    Article  Google Scholar 

  54. A.K. Jonscher, Nature 250, 191 (1974)

    Article  Google Scholar 

  55. D.K. Schroder, Semiconductor Material and Device Characterisation (Wiley, New York, 1990)

    Google Scholar 

  56. N.F. Mott, E.A. Davis, Electronic Process in Noncrystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979), p. 223

    Google Scholar 

  57. X.D. Pi, X.B. Chen, D. Yang, J. Phys. Chem. C. 115, 9838 (2011)

    Article  Google Scholar 

  58. X.B. Chen, X.D. Pi, D. Yang, J. Phys. Chem. C. 115, 661 (2011)

    Article  Google Scholar 

  59. S. Karatas, F. Yakuphanoglu, F.M. Amanullah, J. Phys. Chem. Solids 73, 46 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Tunisian Ministry of High Education and Scientific Research through funding accorded to LaPhyMNE Lab and to the «USCR Bâti de dépôt de couches minces par PECVD—Faculté des Sciences de Gabès ». In addition, this work was also in part funded by MINECO (Spain) and FEDER Funds (Project MAT2015-67458-P), and Fundacion Ramon Areces, Spain (Project 2016-PO024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kraini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khelil, M., Kraiem, S., Kraini, M. et al. The effects of doping type on structural and electrical properties of silicon nanocrystals layers grown by plasma enhanced chemical vapor deposition. J Mater Sci: Mater Electron 29, 11000–11012 (2018). https://doi.org/10.1007/s10854-018-9182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9182-1

Navigation