Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15708–15714 | Cite as

Optical characterization of the HgCdTe-based composite structure obtained by Ag ion implantation

  • A. B. Smirnov
  • R. K. SavkinaEmail author
  • Iu. M. Nasieka
  • V. V. Strelchuk
  • I. N. Demchenko
  • T. Kryshtab
Article
  • 126 Downloads

Abstract

The results concerning the formation of nano-scale patterns on the surface of a ternary compound are presented. The evolution of surface morphology of (111) Hg1−xCdxTe (MCT) (х ~ 0.223) epilayers due to ion irradiation in the energy range of 100–140 keV was studied. Modification of the surface was performed using the method of normal (θ = 0°) and oblique—incidence (θ = 45°) bombardment by Ag+ ions. Surface characteristics were investigated using atomic force microscopy and X-ray photoelectron spectroscopy techniques. Low-temperature photoluminescence and Raman spectroscopy were used for the investigation of the recombination and vibrational properties as well as the defect-impurity states of as-grown and implanted Hg0.777Cd0.223Te epilayers. It was found that ion beam structured regions of MCT surface demonstrate photoluminescence emission in the range of 500–850 nm, with intense peaks at around 733 nm (1.69 eV) and 570 nm (2.16 eV) with a long-wavelength shoulder at 620 nm (2 eV). The observed emission lines are suggested to be mainly related to the presence of various point defects in oxide phases (CdO and Ag2O) induced by ion bombarding in the base material (HgCdTe).

References

  1. 1.
    A. Fekecs, M. Bernier, D. Morris, M. Chicoine, F. Schiettekatte, P. Charette, R. Arès, Opt. Mater. Express 1(7), 1165 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Garaj, W. Hubbard, J.A. Golovchenko, Appl. Phys. Lett. 97(18), 183103 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Zhang, Z.S. Wang, Z.D. Zhang, Z.G. Dai, L.L. Wang, H. Li, L. Zhou, Y.X. Shang, J. He, D.J. Fu, J.R. Liu, Appl. Phys. Lett. 102(19), 193102 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, D.H. Zhang, X.Z. Chen, Y.J. Jin, J.H. Li, C.J. Liu, A.T. Wee, S. Zhang, A. Ramam, Appl. Phys. Lett. 101(2), 021905 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Bayle, C. Bonafos, P. Benzo, G. Benassayag, B. P´ecassou, L. Khomenkova, F. Gourbilleau, R. Carles, Appl. Phys. Lett. 107, 101907 (2015)CrossRefGoogle Scholar
  6. 6.
    A.L. Stepanov, M.F. Galyautdinov, A.B. Evlyukhin, V.I. Nuzhdin, V.F. Valeev, Y.N. Osin, E.A. Evlyukhin, R. Kiyan, T.S. Kavetskyy, B.N. Chichkov, Appl. Phys. A 111(1), 261 (2013)CrossRefGoogle Scholar
  7. 7.
    F.F. Sizov, R.K. Savkina, A.B. Smirnov, R.S. Udovytska, V.P. Kladko, A.I. Gudymenko, O.S. Lytvyn, Phys. Solid State 56(11), 2160 (2014)CrossRefGoogle Scholar
  8. 8.
    A.B. Smirnov, R.K. Savkina, Nanostructuring surfaces of HgCdTe by ion bombardment, in Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016: Springer Proceedings in Physics, ed. by O Fesenko, L Yatsenko (Springer, Cham, 2017)Google Scholar
  9. 9.
    A.B. Smirnov, R. K.Savkina, R.S. Udovytska, O. I.Gudymenko, V.P. Kladko, A.A. Korchovyi, Nanoscale Res. Lett. 12, 320 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Rogalski, Infrared Detectors, 2nd edn (CRC Press, Boca Raton, 2011)Google Scholar
  11. 11.
    T. Kryshtab, R.K. Savkina, A.B. Smirnov, M.D. Kladkevich, V.B. Samoylov, Phys. Status Solidi C 13, 639 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Dobrovolsky, F. Sizov, Y. Kamenev, A. Smirnov, Opto-Electron. Rev. 16(2), 172 (2008)CrossRefGoogle Scholar
  13. 13.
    B.L. Williams, H.G. Robinson, C.R. Helms, N. Zhu, J. Electron. Mater. 26, 600 (1997)CrossRefGoogle Scholar
  14. 14.
    A.-L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth, 1st edn. (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  15. 15.
    T.S. Sun, S.P. Buchner, N.E. Byer, J. Vac. Sci. Technol. 17(5), 1067 (1980)CrossRefGoogle Scholar
  16. 16.
    R.F.C. Farrow, P.N.J. Dennis, H.E. Bishop, N.R. Smart, J.T.M. Wotherspoon, Thin Solid Films 88, 87 (1982)CrossRefGoogle Scholar
  17. 17.
    B. V. Crist, Handbooks of Monochromatic XPS Spectra (XPS International, Inc., Ames, 1999)Google Scholar
  18. 18.
    A.M. Ferraria, A.P. Carapeto, A.M.B. do Rego, Vacuum 86, 1988 (2012)CrossRefGoogle Scholar
  19. 19.
    D.J. Olego, P.M. Raccah, J.P. Faurie, Phys. Rev. B 33, 3819 (1986)CrossRefGoogle Scholar
  20. 20.
    S. Perkowitz, L. Kim, Z. Feng, P. Becla, Phys. Rev. B 42, 1455 (1990)CrossRefGoogle Scholar
  21. 21.
    Yu Nasieka, M. Boyko, V. Strelchuk, B. Danilchenko, L. Rashkovetskyi, P. Fochuk, Solid State Commun. 196, 46 (2014)CrossRefGoogle Scholar
  22. 22.
    P.M. Amirtharaj, N.K. Dhar, J. Baars, H. Seelewind, Semicond. Sci. Technol. 5, S68 (1990)CrossRefGoogle Scholar
  23. 23.
    V.V. Strelchuk, O.F. Kolomys, B.O. Golichenko, M.I. Boyko, E.B. Kaganovich, I.M. Krishchenko, S.O. Kravchenko, O.S. Lytvyn, E.G. Manoilov, I.M. Nasieka, Semicond. Phys. Quant. Electron. Optoelectron. 18, 46 (2015)CrossRefGoogle Scholar
  24. 24.
    I. Martina, R. Wiesinger, D. Jembrih-Simbürger, M. Schreiner, e-Preserv. Sci. 9, 1 (2012)Google Scholar
  25. 25.
    C. Robin, M. Taupin, R. Derone, A. Solignac, P. Ballet, A. Lusson, Appl. Phys. Lett. 95, 202104 (2009)CrossRefGoogle Scholar
  26. 26.
    M.T. Harrison, S.V. Kershaw, M.G. Burt, A. Eychmuller, H. Weller, A.L. Rogach, Mater. Sci. Eng. B 69–70, 355 (2000)CrossRefGoogle Scholar
  27. 27.
    S. Han, Y. Mu, Q. Zhu, Y. Gao, Z. Li, Q. Jin, W. Jin, Anal. Bioanal. Chem. 403, 1343 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Kalytchuk, M. Adam, O. Tomanec, R. Zboril, N. Gaponik, A. Rogach, ACS Photonics 4(6), 1459 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Chen, Y. Wang, J. Xu, J. Ji, J. Zhang, Y. Hu, Y. Gu, J. Fluoresc. 18, 801 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Seo, J. Korean Phys. Soc. 45, 1575 (2004)Google Scholar
  31. 31.
    Yu Naseka, O. Strilchuk, V. Komar, I. Terzin, S. Sulima, K. Bryleva, Phys. Status Solidi B 249, 142 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Fabbri, B. Armani, T. Dierre, J.L. Sekiguchi, O. Plaza, G. Martinez, Salviati, Mater. Lett. 92, 397 (2013)CrossRefGoogle Scholar
  33. 33.
    A.V. Novoselova, V. B. Lazarev (eds), Physicochemical Properties of Semiconductors: A Handbook, (Nauka, Moscow, 1979) (in Russian).Google Scholar
  34. 34.
    C.M. Stahle, C.R. Helms, J. Vac. Sci. Technol. A 10, 3239 (1992)CrossRefGoogle Scholar
  35. 35.
    P. Sigmund, Phys. Rev. 184, 183 (1969)CrossRefGoogle Scholar
  36. 36.
    Ka.G. Raheem, H. Seror Hameed, Int. J. Sci. Res. 4, 1361 (2015)Google Scholar
  37. 37.
    S.M. Hosseinpour-Mashkani, M. Ramezani, Mater. Lett. 130, 259 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V. Lashkaryov Institute of Semiconductor PhysicsNAS of UkraineKyivUkraine
  2. 2.Institute of PhysicsPolish Academy of ScienceWarsawPoland
  3. 3.Departamento de FísicaInstituto Politécnico Nacional – ESFMMexico CityMexico

Personalised recommendations