Skip to main content
Log in

Study of the effect of the synthesis temperature on the photoluminescent properties of InP@ZnS nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work reports the synthesis and the characterization of InP@ZnS nanocrystals prepared by the colloid chemistry method at different synthesis temperatures. Varying the reaction temperature from 100 to 320 °C was possible to control the formation of the ZnS-shell on InP nanocrystals. The results of the nanocrystals chemical composition obtained by energy-dispersive X-ray spectroscopy demonstrated that with the increase of the reaction temperature the particles are obtained with a better stoichiometric ratio. By X-ray diffraction analysis and Raman scattering reveal that semiconductor nanocrystals showed the zinc blende crystalline phase in the direction (111), which was confirmed by high resolution transmission electron microscopy. The average nanocrystals sizes (2–10 nm) were estimated by the Wang equation, which are confirmed analysing the grain average diameter by transmission electron microscopy measurements. The nanocrystal sizes indicate a high quantum confinement because of they are lower than the InP exciton Bohr radius. The obtained semiconductor nanocrystals presented crystalline structure InP-core@ZnS-shell, uniformity in size and exhibit a dependence of emission in the range from 450–650 nm measured by UV–Vis spectroscopy, which allowed obtaining the bandgap of the nanostructures. The bandgap energy could be tuned from 3.73 to 2.38 eV through the variation of the synthesis temperature. The emission peak in InP-core varied as a function of quantum dots size, ranged in the 2.61–2.17 eV region. The InP@ZnS nanocrystals present a high passivation for samples synthetized at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Park, J.Y. Kim, B.D. Chin, Y.C. Kim, J.K. Kim, O.O. Park, Nanotechnology 15, 1217 (2004)

    Article  Google Scholar 

  2. E. Katz, I. Willner, Nanobiotechnology-Concepts, Applications and perspectives, Chap. 14 ed. by C.M. Niemeyer, C.A. Mirkin (Wiley-VCH, Weinheim, 2004), pp. 200–226

    Google Scholar 

  3. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994)

    Article  Google Scholar 

  4. R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, J. Chem. Phys. 80, 4464 (1984)

    Article  Google Scholar 

  5. D. Vasudevan, R.R. Gaddam, A. Trinchi, I. Cole, J. Alloys Compd. 636, 395 (2015)

    Article  Google Scholar 

  6. A.D. Dinsmore, D.S. Hsu, H.F. Gray, S.B. Qadri, Y. Tian, B.R. Ratna, Appl. Phys. Lett. 75, 802 (1999)

    Article  Google Scholar 

  7. R. Maity, K.K. Chattopadhyay, Nanotechnology 15, 812 (2004)

    Article  Google Scholar 

  8. J. Tittel, W. Gohde, F. Koberling, T. Basché, A. Kornowski, H. Weller, A. Eychmüller., J. Phys. Chem. B 101, 3013 (1997)

    Article  Google Scholar 

  9. S. Mahamuni, K. Borgohain, B.S. Bendre, V.J. Leppert, S.H. Risbud, J. Appl. Phys. 85, 2861 (1999)

    Article  Google Scholar 

  10. A.L. Rogach, Mater. Sci. Eng. B 69/70, 435 (2000)

    Article  Google Scholar 

  11. J.P. Borah, J. Barman, K.C. Sarma, Chalcogenide Lett. 5, 201 (2008)

    Google Scholar 

  12. J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon, Angew. Chem. 46, 4630 (2007)

    Article  Google Scholar 

  13. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, P. Reiss, Chem. Mater. 28, 2491 (2016)

    Article  Google Scholar 

  14. M. Levinshteǐn, S. Rumyantsev, M. Shur, Schmidt Handbook Series on Semiconductor Parameters, vol. 1 (World Scientific, London, 1996)

    Book  Google Scholar 

  15. E. Koroknay, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, P. Michler, ‎J. Phys. Conf. Ser. 245, 012077 (2010)

    Article  Google Scholar 

  16. H. Okuda, J. Takada, Y. Iwasaki, N. Hashimoto, C. Nagao, IEEE Trans. Consum. Electr. 36, 436 (1990)

    Article  Google Scholar 

  17. J. Ghrayeb, T.W. Jackson, R. Daniels, D.G. Hopper, In AeroSense ʹ97, p. 237 (1997)

  18. J.C. Barton, P.W. Ranby, J. Phys. E 10, 437 (1977)

    Article  Google Scholar 

  19. A.Z. Obidin, A.N. Pechenov, Yu.M. Popov, V.A. Frolov, Yu.V. Korostelin, P.V. Shapkin, Sov. J. Quantum Electron. 18, 1100 (1988)

    Article  Google Scholar 

  20. L. Li, P. Reiss., J. Am. Chem. Soc. 130, 11588 (2008)

    Article  Google Scholar 

  21. A.D. Lad, S. Mahamuni, Phys. Rev. B 78, 125421 (2008)

    Article  Google Scholar 

  22. M.J. Seong, O.I. Mićić, A.J. Nozik, A. Mascarenhas, H.M. Cheong. Appl. Phys. Lett. 82, 185 (2003)

    Article  Google Scholar 

  23. V.K. LaMer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950)

    Article  Google Scholar 

  24. M. Green, Curr. Opin. Solid State Mater. Sci. 6, 355 (2002)

    Article  Google Scholar 

  25. L.C. Hernández, L. Ponce, E. Rodríguez, A. Fundora, G. Santana, J.L. Menchaca, E. Pérez-Tijerina, Nanoscale Res. Lett. 7:80 (2012)

    Article  Google Scholar 

  26. P. Reiss, M. Protière, L. Li, Small 5, 154 (2009)

    Article  Google Scholar 

  27. M.R. Loghman-Estarki, M. Hajizadeh-Oghaz, H. Edris, R.S. Razavi, CrystEngComm. 15, 5898 (2013)

    Article  Google Scholar 

  28. M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, Z. Hamidi, Ceram. Int. 39, 3173 (2013)

    Article  Google Scholar 

  29. F. Davar, M.R. Loghman-Estarki, R. Ashiri, J. Ind. Eng. Chem. 21, 965 (2015)

    Article  Google Scholar 

  30. J.P. Kim, J.A. Christians, H. Choi, S. Krishnamurthy, P.V. Kamat, J. Phys. Chem. Lett. 5, 1103 (2014)

    Article  Google Scholar 

  31. A.D. Yoffe, Adv. Phys. 42, 173 (1993)

    Article  Google Scholar 

  32. Y. Wang, A. Suna, W. Mahler, R. Kasowski., J. Chem. Phys. 87, 7315–7322 (1987)

    Article  Google Scholar 

  33. Y. Wang, X. Yang, T.C. He, Y. Gao, H.V. Demir, X.W. Sun, H.D. Sun, Appl. Phys. Lett. 102, 021917 (2013)

    Article  Google Scholar 

  34. J. Díaz-Reyes, R.S. Castillo-Ojeda, R. Sánchez-Espíndola, M. Galván-Arellano, O. Zaca-Moran, Curr. Appl. Phys. 15, 103 (2015)

    Article  Google Scholar 

  35. N.Q. Liem, V.X. Quang, D.X. Thanh, Acta Phys. Pol. A 86, 979 (1994)

    Article  Google Scholar 

  36. C. Unni, D. Philip, K.G. Gopchandran, Opt. Mater. 32, 169 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank SIP-IPN for their support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Díaz-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angel-Huerta, F., González-Araoz, M.P., Arias-Cerón, J.S. et al. Study of the effect of the synthesis temperature on the photoluminescent properties of InP@ZnS nanocrystals. J Mater Sci: Mater Electron 29, 15649–15657 (2018). https://doi.org/10.1007/s10854-018-9160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9160-7

Navigation