Skip to main content
Log in

Luminescence properties and preparation of Lu3Al5O12 powder doped with Ce and Pr ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lu3Al5O12:Ce3+ phosphor powder, which exhibits green emission band, was synthesized by the high-temperature solid-state reaction method with a flux BaF2. X-ray diffraction (XRD), photoluminescence (PL) spectra, and fluorescent lifetime spectra were used to characterize the structure and luminescent properties of the sample. The XRD patterns indicated that when prepared at 1550 °C for 3 h with 4 wt% flux, Lu3Al5O12:Ce3+ phosphors powder is the garnet cubic crystal system structure. Photoluminescence (PL) spectra showed that the Lu3Al5O12:Ce3+ phosphor powder can be effectively excited by near ultraviolet and blue light, emitting broad band peaking at 505 nm, which is attributed to 2F5/2 → 2D5/2 transition. The self-concentration quenching mechanism of Ce3+ is the dipole–dipole interaction. Small amount of Pr3+ increased red light emission at 610 nm. Photoluminescence (PL) spectra and fluorescent lifetime spectra indicated that there was an efficient energy transfer process between Ce3+ and Pr3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. W.S. Souza, R.O. Domingues, L.A. Bueno, E.B. da Costa, A.S. Gouveia-Neto, Gouveia-Neto, color tunable green-yellow-orange-red Er3+/Eu3+co-doped PbGeO3:PbF2:CdF2 glass phosphor for application in white-LED technology. J. Lumin. 144, 87–90 (2013)

    Article  Google Scholar 

  2. G.J. Wang, B.X. Yu, D.Y. Duan, S.F. Ye, S.Z. Liu, Li doping effect on the photoluminescence behaviors of KSrPO4:Dy3+ phosphors for WLED light. Mater. Res. Bull 64, 364–369 (2015)

    Article  Google Scholar 

  3. K. Li, Y.S. Chang et al., White LED based on nano-YAG:Ce3+/YAG:Ce3+, Gd3+ hybrid phosphors. Optik 123, 621–623 (2012)

    Article  Google Scholar 

  4. R.Y. Hong, J.H. Li, Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J. Magn. Magn. Mater. 320, 1605–1614 (2008)

    Article  Google Scholar 

  5. Z. Chen, J.H. Zhang, S. Chen, M.Y. Lin, C.Q. He, Preparation and luminescence property of Eu2+, Mn2+ co-doped silicates phosphors for white LED. J. Alloys Compd. 632, 756–759 (2015)

    Article  Google Scholar 

  6. H.-S. Roh, S. Hur, H.J. Song, I.J. Park, Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED. Mater. Lett. 70, 37–39 (2012)

    Article  Google Scholar 

  7. M.L. Ye, L.Q. Zhou, F. Hong, L. Li, Q.H. Xia et al., Synthesis and photoluminescent properties of cuboid-like Y2 (C2O4)3:Tb3+ green-emitting phosphors. Opt. Mater. 47, 161–168 (2015)

    Article  Google Scholar 

  8. Y.H. Jin, Y.H. Hu et al., Tunable blue-green color emission and energy transfer properties of Li2CaGeO4:Ce3+, Tb3+ phosphors for near-UV white-light LEDs. J. Alloys Compd. 610, 695–700 (2014)

    Article  Google Scholar 

  9. L.X. Wang, H.J. Zhu, L. Yuan, Synthesis and luminescent properties of Ce3+ doped LuAG nanosized powders by mixed solvo-thermal method. J. Rare. Earth 16, 28 (2010)

    Google Scholar 

  10. A. Yoshikawa, H. Ogino et al., Growth and optical properties of Yb doped new scintillator crystals. Opt. Mater. 24, 275 (2003)

    Article  Google Scholar 

  11. L. Chen, C.C. Lin et al., Light converting inorganic phosphors for white light-emitting diodes. J. Mater. 3, 2172–2195 (2010)

    Article  Google Scholar 

  12. H.T. Kim, J.H. Kim, J.-K. Lee, Y.C. Kang, Green light-emitting Lu3Al5O12:Ce phosphor powders prepared by spray pyrolysis. Mater. Res. Bull. 47, 1428–1431 (2012)

    Article  Google Scholar 

  13. A. Boukerika, L. Guerbous et al., Investigation of the structural and photoluminescence properties of Ce3+-doped LuAG nanopowders prepared via sol–gel method. Opt. Mater. 40, 14–19 (2015)

    Article  Google Scholar 

  14. H.L. Li, X.J. Liu, L.P. Huang, Luminescent properties of LuAG:Ce phosphors with different Ce contents prepared by a sol–gel combustion method. Opt. Mater. 29, 1138–1142 (2007)

  15. Z.F. Wang, M. Xu, W.P. Zhang, Synthesis and luminescent properties of nanoscale LuAG:RE3+ (Ce, Eu) phosphors prepared by co-precipitation method. J. Lumin. 122, 437–439 (2007)

    Article  Google Scholar 

  16. J.J. Xie et al., Synthesis study of Lu3Al5O12 (Ce) nanoscaled powder by co-precipitation. J. Inorg. Mater. 79, 24 (in Chinese) (2009)

    Google Scholar 

  17. H.L. Li, X.J. Liu, L.P. Huang, Synthesis of nanocrystalline lutetium aluminum garnet powders by co-precipitation method. Ceram. Int. 32, 309 (2006)

    Article  Google Scholar 

  18. E.L. Cates, A.P. Wilkinson et al., Delineating mechanisms of upconversion enhancement by Li+ codoping in Y2SiO5:Pr3+. J. Phys. Chem. 116(23), 12772 (2012)

    Google Scholar 

  19. J.S. Bae, J.H. Yoon, S.K. Park et al., Surf. Rev. Lett. 14(04), 535 (2007)

    Article  Google Scholar 

  20. S.H. Byeon, M.G. Ko, J.C. Park et al., Low-temperature crystallization and highly enhanced photoluminescence of Gd2−xYxO3:Eu3+ by Li doping. Chem. Mater. 14(2), 603 (2002)

    Article  Google Scholar 

  21. Y.H. Zhang, Y.B. Zhang et al., Synthesis and characteristics of fine crystalline LuAG:Ce phosphors by microwave-induced solution combustion method. J. Lumin. 181, 360–366 (2017)

    Article  Google Scholar 

  22. J. Singh, J. Manam et al., Structural and spectroscopic behaviour of Eu3+-doped SrGd2O4 modified by thermal treatments. J. Mater. Sci. 51(6), 2886 (2016)

    Article  Google Scholar 

  23. D.L. Dexter, J.A. Schulman et al., J. Chem. Phys. 22, 1063–1071 (1954)

    Article  Google Scholar 

  24. X.Y. Mi, J.C. Sun, P. Zhou, H.Y. Zhou, Tunable luminescence and energy transfer properties in Ca8MgLu(PO4)7:Ce3+,Tb3+,Mn2+ phosphors. J. Mater. Chem. C 3, 4471–4481 (2015)

    Article  Google Scholar 

  25. P. Dorenbos, J. Lumin. 15, 117–119 (2003)

    Article  Google Scholar 

  26. P. Dorenbos, Phys. Rev. B: Condens. Matter Mater. Phys. 65, 235110 (2002)

    Article  Google Scholar 

  27. D.R. Mullins, S.H. Overbury, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 409(2), 307–319 (1998)

    Article  Google Scholar 

  28. X.W. Yu, C.W. Yan et al., XPS analysis of the cerium conversion coating on the anodized Al6061/SiCp. J. Mater. Sci. Technol. 19(2), 357–360 (2003)

    Google Scholar 

  29. L.M. Wang, L.Q. Zhuang et al., J. East China Univ. Sci. Technol. (Nat. Sci. Ed.) 4, 08 (2015)

    Google Scholar 

  30. M. Cabala, K. Veltruaka, V. Matolin et al., Adsorption properties of Ce/Ag system. In WDS 07 Proceedings of Contributed Papers Jana Safrankova, jiri Pavlu: prague, 2007, pp. 134–139

  31. H. Shi, X.Y. Zhang, N.L. Wang, W.L. Dong, Preparation of Y2O3:Eu3+, Tb3+ nanopowders with tunable luminescence by ammonium bicarbonate co-precipitation method. Funct. Mater. Lett. 6, 8 (2015)

    Google Scholar 

  32. J.C. Sun, X.Y. Mi, L.J. Lei, Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. CrystEngComm 17, 7888–7895 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Scientific and Technological Department of Jilin Province (Nos. 20130522176JH and 20130102016JC), the National Natural Science Foundation of China (No. 61307118)and Changchun Science and Technology Bureau (No. 2013045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Li, R. & Bai, Z. Luminescence properties and preparation of Lu3Al5O12 powder doped with Ce and Pr ions. J Mater Sci: Mater Electron 29, 10753–10761 (2018). https://doi.org/10.1007/s10854-018-9141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9141-x

Navigation