Skip to main content

Advertisement

Log in

Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2 NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. D. Qin, Y. Bi, X. Feng et al., Hydrothermal growth and photoelectrochemistry of highly oriented, crystalline anatase TiO2 nanorods on transparent conducting electrodes. Chem. Mater. 27, 4180–4183 (2015)

    Article  Google Scholar 

  3. M.K. Ahmad, K. Murakami, Rutile-phased TiO2 nanorods/nanoflowers based dye-sensitized solar cell. Appl. Mech. Mater. 773–774, 725–728 (2015)

    Article  Google Scholar 

  4. J.K. Tsai, W.D. Hsu, T.C. Wu et al., Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells. Nanoscale Res. Lett. 8, 1–6 (2013)

    Article  Google Scholar 

  5. W. Wu, J. Liao, H. Chen et al., Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. J. Mater. Chem. 22, 18057–18062 (2012)

    Article  Google Scholar 

  6. M.Y. Song, K.N. Chaudhari, J. Park et al., High efficient Pt counter electrode prepared by homogeneous deposition method for dye-sensitized solar cell. Appl. Energy 100, 132–137 (2012)

    Article  Google Scholar 

  7. A. Yella, H.-W. Lee, H.N. Tsao et al., Porphyrin-sensitized solar cells with cobalt (II/III) based redox electrolyte exceed 12 percent efficiency. Science 80, 629–634 (2011)

    Article  Google Scholar 

  8. E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3 ) reduction in dye-sensitized solar cells. Electrochem. Commun. 10, 1087–1089 (2008)

    Article  Google Scholar 

  9. R. Cruz, D.A.T. Pacheco, A. Mendes, Reduced graphene oxide films as transparent counter-electrodes for dye-sensitized solar cells. Sol. Energy 86, 716–724 (2012)

    Article  Google Scholar 

  10. L.A. Dobrzański, M.P. Prokopowicz, A. Drygała et al., Carbon nanomaterials application as a counter electrode for dye-sensitized solar cells. Arch. Met. Mater. 62, 27–32 (2017)

    Google Scholar 

  11. L. Qiu, H. Zhang, W. Wang et al., Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells. Appl. Surf. Sci. 319, 339–343 (2014)

    Article  Google Scholar 

  12. Z. Li, M.S. Akhtar, J.H. Kuk et al., Graphene application as a counter electrode material for dye-sensitized solar cell. Mater. Lett. 86, 96–99 (2012)

    Article  Google Scholar 

  13. A.B. Suriani, M.D. Nurhafizah, A. Mohamed et al., Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Opt.-Int. J. Light Electron Opt. 139, 291–298 (2017)

    Article  Google Scholar 

  14. A.B. Suriani, M. Muqoyyanah, A. Mohamed et al., Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Opt.-Int. J. Light Electron Opt. 158, 522–534 (2018)

    Article  Google Scholar 

  15. K. Xu, Y. Shen, Z. Zhang et al., The influence of different modified graphene on property of DSSCs. Appl. Surf. Sci. 362, 477–482 (2016). https://doi.org/10.1016/j.apsusc.2015.09.265

    Article  Google Scholar 

  16. J.H. Kang, T. Kim, J. Choi et al., The hidden second oxidation step of hummers method the hidden second oxidation step of Hummers method. Chem. Mater. 28, 756–764 (2016)

    Article  Google Scholar 

  17. P. Yu, S.E. Lowe, G.P. Simon, Y.L. Zhong, Electrochemical exfoliation of graphite and production of functional graphene functional graphene. Curr. Opin. Colloid Interface Sci. 20, 329–338 (2015)

    Article  Google Scholar 

  18. W. Wu, C. Zhang, S. Hou, Electrochemical exfoliation of graphene and graphene-analogous 2D nanosheets. J. Mater. Sci. 52, 10649–10660 (2017)

    Article  Google Scholar 

  19. M. Yeh, L. Lin, C. Sun et al., Multiwalled carbon annotube@reduced graphene oxide nanoribbon as the counter electrode for dye-sensitized solar cells. J. Phys. Chem. 118, 16626–16634 (2014)

    Google Scholar 

  20. R. Bajpai, S. Roy, P. Kumar et al., Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. Appl. Mater. Interfaces 3, 3884–3889 (2011)

    Article  Google Scholar 

  21. A.B. Suriani, A.A. Azira, S.F. Nik et al., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor. Mater. Lett. 63, 2704–2706 (2009)

    Article  Google Scholar 

  22. A.B. Suriani, R.M. Nor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil. J. Ceram. Soc. Jpn. 65–66, 963–968 (2010)

    Article  Google Scholar 

  23. A.B. Suriani, S. Muhamad, P.S. Mohamad Saad et al., Effect of temperature on the growth of vertically aligned carbon nanotubes from palm oil. Defect Diffus. Forum 312–315, 900–905 (2011)

    Article  Google Scholar 

  24. M.S. Azmina, A.B. Suriani, A.N. Falina et al., Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapor deposition method. Nanomater. Synth. Charact. 364, 359–362 (2012)

    Google Scholar 

  25. M.S. Azmina, A.B. Suriani, A.N. Falina et al., Preparation of palm oil based carbon nanotubes at various ferrocene concentration. Nanomater. Synth. Charact. 364, 408–411 (2012)

    Google Scholar 

  26. A.B. Suriani, A.R. Dalila, A. Mohamed et al., Vertically aligned carbon nanotubes synthesized from waste chicken fat. Mater. Lett. 101, 61–64 (2013)

    Article  Google Scholar 

  27. A.B. Suriani, A.R. Dalila, A. Mohamed et al., Fabrication of vertically aligned carbon nanotubes-zinc oxide nanocomposites and their field electron emission enhancement. Mater. Des. 90, 185–195 (2016)

    Article  Google Scholar 

  28. A.B. Suriani, J. Norhafizah, A. Mohamed et al., Scaled-up prototype of carbon nanotube production system utilizing waste cooking palm oil precursor and its nanocomposite application as supercapacitor electrodes. J. Mater. Sci. Mater. Electron 27, 11599–11605 (2016)

    Article  Google Scholar 

  29. A. Mohamed, A.K. Anas, S.A. Bakar et al., Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid Polym. Sci. 292, 3013–3023 (2014)

    Article  Google Scholar 

  30. A. Mohamed, A.K. Anas, S.A. Bakar et al., Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. J. Colloid Interface Sci. 455, 179–187 (2015)

    Article  Google Scholar 

  31. A.B. Suriani, M.D. Nurhafizah, A. Mohamed et al., A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Mater. Lett. 161, 665–668 (2015)

    Article  Google Scholar 

  32. A.B. Suriani, M.D. Nurhafizah, A. Mohamed et al., Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Mater. Des. 99, 174–181 (2016)

    Article  Google Scholar 

  33. V.H. Pham, T.V. Cuong, S.H. Hur et al., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon N. Y. 48, 1945–1951 (2010)

    Article  Google Scholar 

  34. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, Comparison of dye-sensitized ZnO and TiO2 Solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C 111, 1035–1041 (2007)

    Article  Google Scholar 

  35. P. Tiwana, P. Docampo, M.B. Johnston et al., Electron mobility and injection dinamics in mesoporous ZnO, SnO2, and TiO2 Films used in dye-sensitized solar cells. ACS Nano 5, 5158–5166 (2011)

    Article  Google Scholar 

  36. A.K. Chandiran, M. Abdi-jalebi, M.K. Nazeeruddin, M. Gratzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8, 2261–2268 (2014)

    Article  Google Scholar 

  37. M.K. Ahmad, S.M. Mokhtar, C.F. Soon et al., Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J. Mater. Sci. Mater. Electron 27, 7920–7926 (2016)

    Article  Google Scholar 

  38. J. Hu, J. Cheng, S. Tong et al., Dye-sensitized solar cells based on P25 nanoparticles/TiO2 nanotube arrays/hollow TiO2 boxes three-layer composite film. J. Mater. Sci. Mater. Electron 27, 5362–5370 (2016)

    Article  Google Scholar 

  39. A.Q.D. Faisal, Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J. Mater. Sci. Mater. Electron 26, 317–321 (2015)

    Article  Google Scholar 

  40. S. Sadhu, P. Poddar, Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity. J. Phys. Chem. C 118, 19363–19373 (2014)

    Article  Google Scholar 

  41. A. Yasin, F. Guo, G.P. Demopoulos, Aqueous, screen-printable paste for fabrication of mesoporous composite anatase-rutile TiO2 nanoparticle thin films for (photo)electrochemical devices. ACS Sustain. Chem. Eng. 4, 2173–2181 (2016)

    Article  Google Scholar 

  42. M.K. Ahmad, M. Kenji, Effect of anatase TiO2 overlayer on the photovoltaic properties of rutile phase nanostructured dye-sensitized solar cell. Micro Nanoelectron 2, 262–264 (2013)

    Google Scholar 

  43. D. Zhang, T. Yoshida, T. Oekermann et al., Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells. Adv. Funct. Mater. 16, 1228–1234 (2006)

    Article  Google Scholar 

  44. A. Kumar, A.R. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010)

    Article  Google Scholar 

  45. M.Y. Liao, L. Fang, C.L. Xu, F. Wu, Q.L. Huang, M. Saleem, Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 24, 1–8 (2014)

    Article  Google Scholar 

  46. J. Zhou, B. Song, G. Zhao et al., TiO2 nanorod arrays sensitized with CdS quantum dots for solar cell applications: effects of rod geometry on photoelectrochemical performance. Appl. Phys. A Mater. Sci. Process. 107, 321–331 (2012)

    Article  Google Scholar 

  47. X. Fang, T. Ma, G. Guan et al., Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. J. Electroanal. Chem. 570, 257–263 (2004)

    Article  Google Scholar 

  48. L.H. Chang, C.K. Hsieh, M.C. Hsiao et al., A graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter electrode of dye-sensitized solar cells. J. Power Sources 222, 518–525 (2013)

    Article  Google Scholar 

  49. S.H. Aboutalebi, A.T. Chidembo, M. Salari et al., Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    Article  Google Scholar 

  50. R.J. Meier, Vibrational spectroscopy: a “vanishing” discipline? Chem. Soc. Rev. 34, 743–752 (2005)

    Article  Google Scholar 

  51. Z. Luo, A.S. Poyraz, C. Kuo et al., Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 27, 6–17 (2015)

    Article  Google Scholar 

  52. M.M. Yusoff, M.H. Mamat, M.F. Malek et al., Growth of titanium dioxide nanorod arrays through the aqueous chemical route under a novel and facile low-cost method. Mater. Lett. 164, 294–298 (2016)

    Article  Google Scholar 

  53. S.M. Mokhtar, M.K. Ahmad, C.F. Soon et al., Fabrication and characterization of rutile-phased titanium dioxide (TiO2) nanorods array with various reaction times using one step hydrothermal method. Opt.-Int. J. Light Electron Opt. 154, 510–515 (2018)

    Article  Google Scholar 

  54. J. Yan, G. Wu, N. Guan et al., Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978 (2013)

    Article  Google Scholar 

  55. N. Liu, F. Luo, H. Wu et al., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  Google Scholar 

  56. J. Zhao, J. Wu, M. Zheng et al., Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode. Electrochim. Acta 156, 261–266 (2015)

    Article  Google Scholar 

  57. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. Eur. J. 22, 153–159 (2016)

    Article  Google Scholar 

  58. H. Wang, Y. Wang, X. Cao et al., Vibrational properties of graphene and graphene layers. J. Raman Spectrosc. 40, 1791–1796 (2009)

    Article  Google Scholar 

  59. M. Zhou, J. Tang, Q. Cheng et al., Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chem. Phys. Lett. 572, 61–65 (2013)

    Article  Google Scholar 

  60. C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem. Soc. Rev. 43, 291–312 (2014)

    Article  Google Scholar 

  61. K.H. Lee, B. Lee, S.-J. Hwang et al., Large scale production of highly conductive reduced graphene oxide sheets by a solvent-free low temperature reduction. Carbon N. Y. 69, 327–335 (2014)

    Article  Google Scholar 

  62. J.H. Lehman, M. Terrones, E. Mansfield et al., Evaluating the characteristics of multiwall carbon nanotubes. Carbon N. Y. 49, 2581–2602 (2011)

    Article  Google Scholar 

  63. S. Costa, E. Borowiak-Palen, M. Kruszynska et al., Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. 26, 432–441 (2008)

    Google Scholar 

  64. C. Wu, Z. Wang, L. Wang, P.T. Williams, J. Huang, Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Adv. 2, 4045–4047 (2012)

    Article  Google Scholar 

  65. L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 6, 601–608 (2012)

    Article  Google Scholar 

  66. J. Shao, W. Lv, Q. Guo, C. Zhang, Q. Xu, Q. Yang, F. Kang, Hybridization of graphene oxide and carbon nanotubes at the liquid/air interface. Chem. Commun. 48, 3706–3709 (2012)

    Article  Google Scholar 

  67. U. Yaqoob, A.I. Uddin, G.-S. Chung, A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sens. Actuat. B Chem. 224, 738–746 (2016)

    Article  Google Scholar 

  68. L. Wan, Q. Zhang, S. Wang et al., A two-step reduction method for synthesizing graphene nanocomposites with a low loading of well-dispersed platinum nanoparticles for use as counter electrodes in dye-sensitized solar cells. J. Mater. Sci. 50, 4412–4421 (2015)

    Article  Google Scholar 

  69. G. Yue, J. Wu, Y. Xiao et al., Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochim. Acta 92, 64–70 (2013)

    Article  Google Scholar 

  70. J. Lei, H. Li, J. Zhang, M. Anpo, Mixed-Phase TiO2 Nanomaterials as Efficient Photocatalysts. Low Dimensional and Nanostructured Materials and Devices. (Springer, Switzerland, 2016), pp. 423–429

  71. Q. Zhang, Y. Liu, Y. Duan, N. Fu, Q. Liu, Y. Fang, Q. Sun, Y. Lin, Mn3O4/graphene composite as counter electrode in dye-sensitized solar cells. RSC Adv. 4, 15091–15097 (2014)

    Article  Google Scholar 

  72. S. Hwang, M. Batmunkh, M.J. Nine, H. Chung, H. Jeong, Dye-sensitized solar cell counter electrodes based on carbon nanotubes. ChemPhysChem 16, 53–65 (2015)

    Article  Google Scholar 

  73. T. Adachi, H. Hoshi, Preparation and characterization of Pt/carbon counter electrodes for dye-sensitized solar cells. Mater. Lett. 94, 15–18 (2013)

    Article  Google Scholar 

  74. X. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires. Angew. Chem. 124, 2781–2784 (2012)

    Article  Google Scholar 

  75. J. Su, L. Guo, High aspect ratio TiO2 nanowires tailored in concentrated HCl hydrothermal condition for photoelectrochemical water splitting. RSC Adv. 5, 53012–53018 (2015)

    Article  Google Scholar 

  76. L. Kosyachenko, Solar Cells-Dye-Sensitized Devices (Intech, Croatia, 2011)

    Book  Google Scholar 

  77. A.M. Ilyas, M.A. Gondal, U. Baig et al., Photovoltaic performance and photocatalytic activity of facile synthesized graphene decorated TiO2 monohybrid using nanosecond pulsed ablation in liquid technique. Sol. Energy 137, 246–255 (2016)

    Article  Google Scholar 

  78. J. Chou, C. Huang, Y. Lin et al., The influence of different annealing temperatures on graphene modified TiO2 for dye-sensitized solar cell. IEEE Trans Nanotechnol 15, 164–170 (2016)

    Article  Google Scholar 

  79. J. Tian, R. Gao, Q. Zhang et al., Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J. Phys. Chem. C 116, 18655–18662 (2012)

    Article  Google Scholar 

  80. S. Sarker, A.J.S. Ahammad, H.W. Seo, D.M. Kim, Electrochemical impedance spectra of dye-sensitized solar cells: fundamentals and spreadsheet calculation. Int. J. Photoenergy (2014). https://doi.org/10.1155/2014/851705

    Google Scholar 

  81. S.P. Lim, A. Pandikumar, H.N. Lim et al., Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N,S-Co-doped-TiO2 photoanode. Sci. Rep. 5(119), 1–14 (2015)

    Google Scholar 

  82. D. Dahlan, S.K. Md Saad, A.U. Berli et al., Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Phys. E Low-Dimens. Syst. Nanostruct. 91, 185–189 (2017)

    Article  Google Scholar 

  83. A.A. Umar, S. Nafisah, S.K. Md Saad et al., Poriferous microtablet of anatase TiO2 growth on an ITO surface for high-efficiency dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 122, 174–182 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the TWAS-COMSTECH Joint Research Grant (Grant Code: 2017-0001-102-11) and Fundamental Research Grant Scheme (Grant Code: 2015-0154-102-02) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Suriani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriani, A.B., Muqoyyanah, Mohamed, A. et al. Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. J Mater Sci: Mater Electron 29, 10723–10743 (2018). https://doi.org/10.1007/s10854-018-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9139-4

Navigation