Skip to main content

Advertisement

Log in

Enhanced dielectric performance in PVDF/Al-Al2O3 core–shell nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on scalable, time saving, and cost effective method to synthesize core–shell based nanodielectrics for energy storage applications. Nanodielectric films were fabricated by embedding highly ferroelectric β-phase polyvinilydine fluoride (PVDF) polymer with high electrical conductivity alumina coated aluminum nanoparticles. Al-Al2O3 core–shell nanoparticles were successfully synthesized through a simple, cost effective, and scalable blending procedure in PVDF to yield high performance energy storage capacitors. The results on electrical permittivity values, structural morphology and phases change with thermal annealing, thermal and frequency response of capacitance, dielectric strength, and dielectric loss of the produced films with different loadings of core–shell nanoparticles are presented. The dielectric permittivity K of the nanocomposite is found to increase from 12 for pure PVDF polymer to a value of 23.6 when PVDF was embedded with a 20% volume loading of Al-Al2O3 core–shell nanoparticles. Electrical characterization showed reproducible and stable capacitance values of 10–25 nF/in2 over frequencies of up to 10 MHz as well as an increase in capacitance with temperature below 70 °C, and a decrease thereafter. Breakdown voltage for the Al-Al2O3/PVDF composite films reached 70 V/µm at a loading of 10% and decreased to 63 V/µm for 20% loading films. Results show that proper loadings (10–20%) of engineered oxidized aluminum (Al-Al2O3) in PVDF provide high permittivity low loss nanodielectrics on par with commercially leading dielectrics manufacturer (3M C-Ply) along with the added structural flexibility and cost-saving to the end user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Mahadevegowda, N.P. Young, P.S. Grant, Engineering the nanostructure of a polymernanocomposite film containing Ti-based core-shell particles to enhance dielectric response. Nanoscale. 7, 15727 (2015)

    Article  CAS  Google Scholar 

  2. Y.J. Li, X. Xiong, C.L. Zou, X.F. Ren, Y.S. Zhao, One-dimensional dielectric/metallic hybrid materials for photonic applications. Small. 11, 3728 (2015)

    Article  CAS  Google Scholar 

  3. S.K. Saha, Nanodielectrics with giant permittivity. Bull. Mater. Sci. 31, 473 (2008)

    Article  CAS  Google Scholar 

  4. J.Y. Li, L. Zhong, S. Duchame, Appl. Phys. Lett. 90, 132901 (2007)

    Article  Google Scholar 

  5. J. Lu, C.P. Wong, Recent advances in high-k nanocomposite materials for embedded capacitor applications. IEEE Trans. Dielectr. Electr. Insul. 15, 1322 (2008)

    Article  CAS  Google Scholar 

  6. C. Tang, G. Long, X. Hu, K.W. Wong, W.M. Lau, M. Fan, J. Mei, T. Xu, B. Wang, D. Hui, Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon- nanotubes on graphene on polymer-microspheres. Nanoscale. 6, 7877 (2014)

    Article  CAS  Google Scholar 

  7. G. Keledi, J. Hári, B. Pukánszky, Polymer nanocomposites: structure, interaction, and functionality. Nanoscale. 4, 1919 (2012)

    Article  CAS  Google Scholar 

  8. L. Zhu, Q. Wang, Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules. 45, 2937 (2012)

    Article  CAS  Google Scholar 

  9. J. Ho, R. Jow, Characterization of high temperature polymer thin films for power conditioning capacitors, DTIC Document (2009)

  10. Q. Chen, Y. Shen, S. Zhang, Q. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433458 (2015)

    Article  Google Scholar 

  11. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, Q. Zhang, Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 25, 1734 (2013)

    Article  CAS  Google Scholar 

  12. M. Sindu Shree, H. Schulz-Senft, N.H. Alsleben, Y.K. Mishra, A. Staubitz, R. Adelung, Light, force, and heat: a multi-stimuli composite that reveals its violent past. ACS Appl. Mater. Interfaces. 9, 38000 (2017)

    Article  Google Scholar 

  13. Y.K. Mishra, R. Adelung, ZnO tetrapod materials for functional applications. Mater. Today. (2018). https://doi.org/10.1016/j.mattod.2017.11.003

    Article  Google Scholar 

  14. J.N. Ansari, S. Khasim, A. Parveen, O.A. Al-Hartomy, Z. Khattari, N. Badi, Synthesis, characterization, dielectric and rectification properties of PANI/Nd2O3: Al2O3 nanocomposites. Polym. Adv. Technol. 27, 1064–1071 (2016)

    Article  CAS  Google Scholar 

  15. Z.M. Dang, M.S. Zheng, J.W. Zha, (2016) 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12, 1688

    Article  CAS  Google Scholar 

  16. J.K. Nelson, J.C. Fothergill, Internal charge behavior of nanocomposites. Nanotechnology. 15, 586–595 (2004)

    Article  CAS  Google Scholar 

  17. T.J. Lewis, Interfaces: nanometric dielectrics. J. Phys. D. 38, 202 (2005)

    Article  CAS  Google Scholar 

  18. S. Sataparthy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34, 727 (2010)

    Article  Google Scholar 

  19. P. Barber, S. Balasubramanian, Y. Anhuchamy, S. Gong, A. Wibowo, H. Gao, H.J. Plochn, H.Z. Loye, Polymercomposite and nanocomposites dielectric, materials for pulse power energy storage, Materials. 2, 1697 (2009)

    Article  CAS  Google Scholar 

  20. R. Mekala, N. Badi, Modeling and simulation of high permittivity core-shell ferroelectric polymers for energy storage solutions. COMSOL Conference, Boston, 9–11 October 2013

  21. R. Bikky, N. Badi, A. Bensaoula, Effective medium theory of nanodielectrics for embedded energy storage capacitors. COMSOL Conference, Boston. 7–9 October 2010

  22. D.M. Ekanath, N. Badi, A. Bensaoula, Modeling and simulation of artificial core-shell based nanodielectrics for electrostatic capacitors applications. COMSOL Conference, Boston. 13–15 October 2011

  23. N. Badi, A. Benqaoula, A.V. Simakin, G.A. Shafeev, Laser engineered core–shell nanodielectrics with giant electrical permittivity. Mater. Lett. 108, 225–227 (2013)

    Article  CAS  Google Scholar 

  24. http://www.americanelements.com/alnp.html

  25. W.T. Whang, W.H. Cheng, A Study on Interfacial Adhesion of Poly(vinylidene fluoride) with Substrates in a Multilayer Structure (Society of Plastic Engineers Inc., Bethel, 2002)

    Google Scholar 

  26. (1998) http://www.omicsonline.org/scientific-reports/srep385.php

  27. M. Zervos, D. Tsokkou, M. Pervolaraki, A. Othonos, Low temperature growth of In2O3 and InN nanocrystals on Si(111) via chemical vapour deposition based on the sublimation of NH4Cl in In (2001)

  28. A. Bourbia, S. Boulkhessaim, H. Bedboudi, M. Draissia, Phase transformation in rapidly solidified Al-Al2O3 alloys by high-frequency melting. Phys. Scripta. 85, 055601 (2002)

    Article  Google Scholar 

  29. C. Yang, Y. Lin, C.W. Nan, Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon. 47, 1096 (2009)

    Article  CAS  Google Scholar 

  30. H. Liu, Y. Shen, Y. Song, C.W. Nan, Y. Lin, X. Yang, Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv. Mater. 23, 5104 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for this work, from the Deanship of Scientific research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under Grant No. S-0214/1438.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. NB planned this study and carried out all electrical characterizations, data analysis, and plotting. RM prepared all figures. SK wrote the manuscript. ASR prepared the SEM samples and performed analysis. AI read and commented on the manuscript.

Corresponding author

Correspondence to Nacer Badi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badi, N., Mekala, R., Khasim, S. et al. Enhanced dielectric performance in PVDF/Al-Al2O3 core–shell nanocomposites. J Mater Sci: Mater Electron 29, 10593–10599 (2018). https://doi.org/10.1007/s10854-018-9123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9123-z

Navigation