Skip to main content

Advertisement

Log in

Direct growth of mesoporous Carbon on aluminum foil for supercapacitors devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays it is mandatory sustainable energy production and storage. In this scenario, supercapacitors play an important role as ultrafast energy storage devices with long lifetime and high efficiency features. The new era of these devices is based on new materials and electrolytes that are environment-friendly during manufacturing and applications. This paper presents a high surface area mesoporous Carbon (MC) material direct growth on aluminum current collector on an environment-friendly process. MC material showed specific capacitance of ~ 8 F g− 1 and impressive chemical stability. Prepared with two MC electrodes, low-cost cellulosic separator and aqueous neutral electrolyte, the supercapacitor coin cells presented very low equivalent series resistance, ~ 100% device storage and supply efficiency, then almost no Capacitance, Energy and Power lost after dozen thousand cycles (on the optimized cell). The Ragone plot contrasts our data with conventional capacitors, electric double-layer capacitor (EDLC) and batteries, fitting them well into the EDLC category. For our best understanding, the excellent electric contact of MC and Al current collector is the key parameter to achieve a minimal ESR, higher efficiency and longer lifetime. The detailed characterization of material and devices are presented herein, evidencing MC as promising materials for energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Adapted from Ref. [1]

Similar content being viewed by others

References

  1. M. Lu, Supercapacitors: Materials, Systems and Applications (Wiley, New York, 2013)

    Google Scholar 

  2. K. Fic, M. He, E.J. Berg, P. Novák, E. Frackowiak, Comparative operando study of degradation mechanisms in carbon-based electrochemical capacitors with Li2SO4and LiNO3electrolytes. Carbon 120, 281–293 (2017)

    Article  CAS  Google Scholar 

  3. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001)

    Article  CAS  Google Scholar 

  4. P. Simon, T. Brousse, F. Favier, Electrochemical double-layer capacitors (EDLC). Supercapacitors Based Carbon Pseudocapacit. Mater. (2017). https://doi.org/10.1002/9781119007333.ch1

    Article  Google Scholar 

  5. C. Zhong et al., A review of electrolyte materials and compositions for electrochemical EDLC. Chem. Soc. Rev. 44(21), 7484–7539 (2015)

    Article  CAS  Google Scholar 

  6. A. Szabó et al., Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate. Sci. Rep. 7, 9557 (2017)

    Article  Google Scholar 

  7. P.J.F. Harris, “New perspectives on the structure of graphitic carbons. Crit. Rev. Solid State Mater. Sci. 30(4), 235–253 (2005)

    Article  CAS  Google Scholar 

  8. J.F. Harris, R.D. Vis, High-resolution transmission electron microscopy of carbon and nanocrystals in the Allende meteorite. Proc. R. Soc. Lond. A (2003). https://doi.org/10.1098/rspa.2003.1125

    Article  Google Scholar 

  9. P.J.F. Harris, S.C. Tsang, High-resolution electron microscopy studies of non-graphitizing carbons. Philos. Mag. A 76(3), 667–677 (1997)

    Article  CAS  Google Scholar 

  10. R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc.R. Soc. Lond. A (1951). https://doi.org/10.1098/rspa.1951.0197

    Article  Google Scholar 

  11. L.G. Cançado et al., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011)

    Article  Google Scholar 

  12. E.F. Antunes et al., “Comparative study of first-and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44(11), 2202–2211 (2006)

    Article  CAS  Google Scholar 

  13. A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001)

    Article  Google Scholar 

  14. J.V.S. Moreira, E.J. Corat, P.W. May, L.D.R. Cardoso, P.A. Lelis, H. Zanin, Freestanding aligned multi-walled carbon nanotubes for supercapacitor devices. J. Electron. Mater. 45(11), 5781–5788 (2016)

    Article  CAS  Google Scholar 

  15. H. Ago et al., Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103(38), 8116–8121 (1999)

    Article  CAS  Google Scholar 

  16. V. Datsyuk et al., Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6), 833–840 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to LNNano/CNPEM for SEM & HRTEM support and also the financial support from the Brazilian funding agencies CNPq (301486/2016-6), FAPESP (2017/03640-1, 2017/03371-0, 2017/02634-8, 2016/25082-8, 2016/21941-6, 2014/02163-7, 2017/11958-1) and CAPES (1740195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudson Zanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicentini, R., Costa, L.H., Nunes, W. et al. Direct growth of mesoporous Carbon on aluminum foil for supercapacitors devices. J Mater Sci: Mater Electron 29, 10573–10582 (2018). https://doi.org/10.1007/s10854-018-9121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9121-1

Navigation