Investigation of detailed physical properties and solar cell performances of various type rare earth elements doped ZnO thin films

Abstract

In this study the structural, optical, electrical properties and solar cell performance of undoped ZnO and rare earth (RE) doped ZnO (Zn0.95Yb0.05O, Zn0.95Eu0.05O and Zn0.90 Eu0.05Yb0.05O) thin films prepared by sol–gel spin coating method were investigated. The structural characterizations of the obtained samples were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The optical properties of these thin films were carried out with UV–vis transmittance spectroscopy technique in 350–800 nm range. The electrical properties of films were examined by resistance measurements at room temperature. XRD results show that all samples have single phase wurtzite (hexagonal) structure with (002) c-plane orientation. Detailed structural characterizations were examined from XRD data. SEM analysis represents that nanoparticles are formed on the thin films and the type of dopant affected the morphologies, thickness and sizes of ZnO nanostructures. Our optical results indicate the average optical transmittances of RE doped ZnO samples are 98% at different regions in the visible region. Also the band gap energy of all of thin films was calculated from optical transmittance spectroscopy data using Tauc equation. The band gap energies of undoped, Yb, Eu, and Eu/Yb co-doped ZnO were found as 3.307, 3.295, 3.29 and 3.28 eV, respectively. Urbach energy was calculated from spectral absorption coefficient and this value shows an increase with doping Eu and Yb elements. It was observed that the electrical resistivity of doped samples is low compared to ZnO thin film. Also, in this study the rare earth elements effects on the solar cell performance of ZnO nanostructures were investigated and it was seen that Yb and Eu elements improve the cell performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. Zhang, F. Jin, M. Zheng, J. Liu, Z. Zhao, X. Dua, RSC Adv. 4, 10462–10466 (2014)

    CAS  Google Scholar 

  2. 2.

    G.M. Nam, M.S. Kwon, J. Inform. Disp. 9(3), 8–11 (2008)

    Google Scholar 

  3. 3.

    Y. Liu, Y. Li, H. Zeng, J Nanomaterials 1–9 (2013)

  4. 4.

    L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, Sens. Actuators B 162(1), 237–243 (2012)

    CAS  Google Scholar 

  5. 5.

    X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6(12), 2768–2772 (2006)

    CAS  Google Scholar 

  6. 6.

    L. Zhang, X. Fang, C. Ye, Controlled Growth of Nanomaterials, 1st edn. (World Scientific Publishing Co Pte Ltd, Singapore, 2007), p. 14

    Google Scholar 

  7. 7.

    A.M. Schimpf, C.E. Gunthardt, J.D. Rinehart, J.M. Mayer, D.R. Gamelin, J. Am. Chem. Soc. 135, 16569–16577 (2013)

    CAS  Google Scholar 

  8. 8.

    S. Rawalekar, T. Mokari, Adv. Energy Mater. 3, 12–27 (2013)

    CAS  Google Scholar 

  9. 9.

    G.D. Mahan, J. Appl. Phys. 54, 3825 (1983)

    CAS  Google Scholar 

  10. 10.

    M. Yoshimoto, S. Takagi, Y. Umemura, M. Hada, H. Nakatsuji, J. Catal. 173, 53 (1998)

    CAS  Google Scholar 

  11. 11.

    Y.R. Jang, K.H. Yoo, J.S. Ahn, C. Kim, S.M. Park, Appl. Surf. Sci. 257, 2822–2824 (2011)

    CAS  Google Scholar 

  12. 12.

    J. Petersen, C. Brimont, M. Gallart, G. Schmerber, P. Gilliot, C. Ulhaq-Bouillet, J.L. Rehspringer, S. Colis, C. Becker, A. Slaoui, A. Dinia, J. Appl. Phys. 107(12), 123522 (2010)

    Google Scholar 

  13. 13.

    S. López-Romero, M.J. Quiroz-Jiménez, M.H. García, A. Aguilar-Castillo, World J. Condens. Matter Phys. 4, 227–234 (2014)

    Google Scholar 

  14. 14.

    T.W. Duan, B. Yan, J. Mater. Chem. C 3, 2823–2830 (2015)

    CAS  Google Scholar 

  15. 15.

    C.H. Luong, S. Kim, S. Surabhi, T.S. Vo, K.M. Lee, S.G. Yoon, J.H. Jeong, J.H. Choi, J.R. Jeong, Appl. Surf. Sci. 351, 487–491 (2015)

    CAS  Google Scholar 

  16. 16.

    P. Periyat, S. Ullattil, Mater. Sci. Semicond. Process. 31, 139–146 (2015)

    CAS  Google Scholar 

  17. 17.

    J.M. Chiu, Y. Tai, ACS Appl. Mater. Interfaces 5, 6946–6950 (2013)

    CAS  Google Scholar 

  18. 18.

    S. Sutthana, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Ruankham, S. Choopun, Energy Procedia 79, 1021–1026 (2015)

    CAS  Google Scholar 

  19. 19.

    B. Hussain, A. Ebong, I. Ferguson, Sol. Energy Mater. Sol. Cells 139, 95–100 (2015)

    CAS  Google Scholar 

  20. 20.

    J. Zhao, A. Wang, M.A. Green, F. Ferrazza, Appl. Phys. Lett. 73, 1991–1993 (1998)

    CAS  Google Scholar 

  21. 21.

    A. Gholizadeh, A. Reyhani, P. Parvin, S.Z. Mortazav, J. Phys. D 50, 185501 (2017)

    Google Scholar 

  22. 22.

    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455–459 (2005)

    CAS  Google Scholar 

  23. 23.

    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)

    Google Scholar 

  24. 24.

    A.K. Chandiran, M. Abdi-Jalebi, M.K. Nazeeruddin, M. Grätzel, ACS Nano 8, 2261–2268 (2014)

    CAS  Google Scholar 

  25. 25.

    M. Wang, C. Huang, Z. Huang, W. Guo, J. Huang, H. Wang, Y. Cao, Q. Liu, J. Liang, Opt. Mater. 31(10), 1502–1505 (2009)

    CAS  Google Scholar 

  26. 26.

    P. Pandey, R. Kurchania, F.Z. Haque, J. Adv. Phys. 3, 1–7 (2014)

    CAS  Google Scholar 

  27. 27.

    I. Soumahoro et al., J. Appl. Phys. 109, 033708 (2011)

    Google Scholar 

  28. 28.

    S. Demirözü Şenol, J. Mater. Sci. 27, 7767–7775 (2016)

    Google Scholar 

  29. 29.

    D. Katsuki, T. Sato, R. Suzuki, Y. Nanai, S. Kimura, T. Okuno, Appl. Phys. A 108, 321–327 (2012)

    CAS  Google Scholar 

  30. 30.

    M. Lluscà, J. López-Vidrier, A. Antony, S. Hernández, B. Garrido, J. Bertomeu, Thin Solid Films 562, 456–461 (2014)

    Google Scholar 

  31. 31.

    P. Pandey, R. Kurchania, F.Z. Haque, Opt. Spectrosc. 119(4), 666–671 (2015)

    CAS  Google Scholar 

  32. 32.

    E. Asikuzun, O. Ozturk, L. Arda, A.T. Tasci, F. Kartal, C. Terzioglu, Ceram. Int. 42, 8085–8091 (2016)

    CAS  Google Scholar 

  33. 33.

    H. Zhou, D. Yi, Z. Yu, L. Xiao, J. Li, Thin Solid Films 515, 6909–6914 (2007)

    CAS  Google Scholar 

  34. 34.

    A.K. Srivastava, J. Kumar, Sci. Technol. Adv. Mater 14, 065002 (2013)

    Google Scholar 

  35. 35.

    H.C. Chen, P.W. Cheng, K.T. Huang, Appl Opt. 56(4), 163–167 (2017)

    Google Scholar 

  36. 36.

    D. Dimova-Malinovska, H. Nichev, O. Angelov, Phys. Status Solidi C 5, 3353–3357 (2008)

    CAS  Google Scholar 

  37. 37.

    R. Jenkins, J.L. de Vries, Worked Examples in X-Ray Analysis, 2nd edn. (Philips Technical Library, Macmillan, 1978)

  38. 38.

    J. Tauc, Amorphous and Liquid Semiconductors Plenum, 1st edn. (Springer, London, 1974), p. 37

    Google Scholar 

  39. 39.

    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)

    Google Scholar 

  40. 40.

    H. Lin, C.P. Huang, W. Li, C. Ni, S. Ismat Shah, Y.H. Tseng, Appl. Catal. B 68, 1–11 (2006)

    CAS  Google Scholar 

  41. 41.

    S.J. Ikhmayies, R.N. Ahmad-Bitar, J. Mater. Res. Technol. 2(3), 221–227 (2013)

    CAS  Google Scholar 

  42. 42.

    N. Sharma, S. Sharma, K. Prabakar, S. Amirthapandian, S. Ilango, S. Dash, A.K. Tyagi, arXiv 1507.04867 (2015)

  43. 43.

    R. Swapna, T.S. Reddy, K. Venkateswarlu, M.C. Santhosh Kumar, Procedia Mater. Sci. 10, 723–729 (2015)

    CAS  Google Scholar 

  44. 44.

    Q. Yu, W. Fu, C. Yu, H. Yang, R. Wei, Y. Sui, S. Liu, Z. Liu, M. Li, G. Wang, C. Shao, Y. Liu, G. Zou, J. Phys. D 40, 5592–5597 (2007)

    CAS  Google Scholar 

  45. 45.

    J. Anuntahirunrat, Y.M. Sung, P. Pooyodying, Mater. Sci. Eng. 229, 012019 (2017)

    Google Scholar 

  46. 46.

    J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Namık Akçay and Dr. Gökhan Algün for allowing the author to access their laboratory facilities for preparation and some measurements of samples at the Physics Department of İstanbul University. This work was supported financially by Research Fund of the Istanbul University in Turkey with project number BEK-26582.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neslihan Üzar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Üzar, N. Investigation of detailed physical properties and solar cell performances of various type rare earth elements doped ZnO thin films. J Mater Sci: Mater Electron 29, 10471–10479 (2018). https://doi.org/10.1007/s10854-018-9111-3

Download citation