Skip to main content
Log in

Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Uniform and crystalline cuprous oxide (Cu2O) thin films were deposited on corning glass substrates precoated with a thin layer of CuxS by chemical bath deposition at low temperature (≤ 70 °C). The influence of temperature and pH was investigated on the structural, morphological, optical and electrical properties of the thin films. It was found that the complexing agent triethanolamine plays a key role to get crystalline films. Furthermore, the increase of pH changes preferential orientation from the plane (111) to the plane (200), which favors the formation of compact thin films, resulting in an increase of their conductivity. Finally, the increase of temperature increases the thickness and stimulates the formation of well-defined morphologies, which enhances transmittance and reduces the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Nandy, A. Banerjee, E. Fortunato, R. Martins, A review on Cu2O and CuI-based p-type semiconducting transparent oxide materials: promising candidates for new generation oxide based electronics. Rev. Adv. Sci. Eng. 2(4), 273–304 (2013)

    Article  Google Scholar 

  2. P.E. De Jongh, D. Vanmaekelbergh, J.J.D. Kelly, Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147(2), 486–489 (2000)

    Article  Google Scholar 

  3. F.M. Li, R. Waddingham, W.I. Milne, A.J. Flewitt, S. Speakman, J. Dutson, et al., Low temperature (< 100 °C) deposited P-type cuprous oxide thin films: importance of controlled oxygen and deposition energy. Thin Solid Films 520(4), 1278–1284 (2011)

    Article  Google Scholar 

  4. B.P. Rai, Cu2O solar cells: a review. Solar Cells 25(3), 265–272 (1988)

    Article  Google Scholar 

  5. J. Luo, L. Steier, M.K. Son, M. Schreier, M.T. Mayer, M. Grätzel, Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett. 16(3), 1848–1857 (2016)

    Article  Google Scholar 

  6. C. Dong, M. Zhong, T. Huang, M. Ma, D. Wortmann, M. Brajdic, I. Kelbassa, Photodegradation of methyl orange under visible light by micro-nano hierarchical Cu2O structure fabricated by hybrid laser processing and chemical dealloying. ACS Appl. Mater. Interfaces 3(11), 4332–4338 (2011)

    Article  Google Scholar 

  7. S. Chatterjee, A.J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J. Phys. Chem. C 120(3), 1428–1437 (2016)

    Article  Google Scholar 

  8. J.F. De Brito, A.A. da Silva, A.J. Cavalheiro, M.V.B. Zanoni, Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu/Cu2O electrode. Int. J. Electrochem. Sci. 9, 5961–5973 (2014)

    Google Scholar 

  9. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 18(4), 867–871 (2006)

    Article  Google Scholar 

  10. H.Y. Xu, C. Chen, L. Xu, J.K. Dong, Direct growth and shape control of Cu2O film via one-step chemical bath deposition. Thin Solid Films 527, 76–80 (2013)

    Article  Google Scholar 

  11. B. Balamurugan, B.R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin solid films 396(1), 90–96 (2001)

    Article  Google Scholar 

  12. Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich, J.F. Pierson, Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J. Appl. Phys. 115(7), 073505 (2014)

    Article  Google Scholar 

  13. V. Figueiredo, E. Elangovan, G. Goncalves, P. Barquinha, L. Pereira, N. Franco, et al., Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl. Surf. Sci. 254(13), 3949–3954 (2008)

    Article  Google Scholar 

  14. F. Caballero-Briones, A. Palacios-Padrós, O. Calzadilla, F. Sanz, Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization. Electrochim. Acta 55(14), 4353–4358 (2010)

    Article  Google Scholar 

  15. T. Kosugi, S. Kaneko, Novel Spray-Pyrolysis deposition of cuprous oxide thin films. J. Am. Ceram. Soc. 81(12), 3117–3124 (1998)

    Article  Google Scholar 

  16. D.S.C. Halin, I.A. Talib, A.R. Daud, M.A.A. Hamid, Characterizations of cuprous oxide thin films prepared by sol-gel spin coating technique with different additives for the photoelectrochemical solar cell. Int. J. Photoenergy 2014, 352156 (2014)

    Article  Google Scholar 

  17. Y.L. Liu, Y.C. Liu, R. Mu, H. Yang, C.L. Shao, J.Y. Zhang, et al., The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol. 20(1), 44 (2004)

    Article  Google Scholar 

  18. T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Solar Energy Mater. Solar Cells 56(1), 85–92 (1998)

    Article  Google Scholar 

  19. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Appl. Surf. Sci. 150(1), 143–151 (1999)

    Article  Google Scholar 

  20. P.B. Ahirrao, B.R. Sankapal, R.S. Patil, Nanocrystalline p-type-cuprous oxide thin films by room temperature chemical bath deposition method. J. Alloy. Compd. 509(18), 5551–5554 (2011)

    Article  Google Scholar 

  21. I. Grozdanov, Electroless chemical deposition technique for Cu2O thin films. Mater. Lett. 19(5–6), 281–285 (1994)

    Article  Google Scholar 

  22. T. Terasako, K. Ohnishi, H. Okada, S. Obara, M. Yagi, Possibility of selective and morphology-controlled growth of CuO and Cu2O films. Thin Solid Films 644, 146–155 (2017)

    Article  Google Scholar 

  23. P. Usha Rajalakshmi, R. Oommen, Structural and optical characterization of chemically deposited cuprous Oxide (Cu2O) thin film. Adv. Mater. Res. 678, 118–122 (2013)

    Article  Google Scholar 

  24. D. Wang, M. Mo, D. Yu, L. Xu, F. Li, Y. Qian, Large-scale growth and shape evolution of Cu2O cubes. Crystal Growth Des. 3(5), 717–720 (2003)

    Article  Google Scholar 

  25. A. Kariper, E. Güneri, F. Göde, C. Gümüs, Effect of pH on the physical properties of CdS thin films deposited by CBD. Chalcogen. Lett. 9, 27–40 (2012)

    Google Scholar 

  26. J. Dong, H. Xu, F. Zhang, C. Chen, L. Liu, G. Wu, Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation. Appl. Catal. A 470, 294–302 (2014)

    Article  Google Scholar 

  27. H. Xu, J. Dong, C. Chen, One-step chemical bath deposition and photocatalytic activity of Cu2O thin films with orientation and size controlled by a chelating agent. Mater. Chem. Phys. 143(2), 713–719 (2014)

    Article  Google Scholar 

  28. M. Yu, T.I. Draskovic, Y. Wu, Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates. Inorg. Chem. 53(11), 5845–5851 (2014)

    Article  Google Scholar 

  29. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5(4), 047143 (2015)

    Article  Google Scholar 

  30. T.B. Nasr, N. Kamoun, M. Kanzari, R. Bennaceur, Effect of pH on the properties of ZnS thin films grown by chemical bath deposition. Thin Solid Films 500, 4 (2006)

    Article  Google Scholar 

  31. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E 16(12), 1214 (1983)

    Article  Google Scholar 

  32. L. Canham (ed.), Handbook of Porous Silicon, (Springer, Cham, 2014), p. 243

    Google Scholar 

  33. B.J. Baruah, M.N. Bora, L. Saikia, D. Saikia, P. Phukan, K.C. Sarma, Effects of deposition temperature on structural, optical and electrical properties of TEA complexed nanocrystalline films of PbS prepared from lead acetate with reduced concentration. J. Mater. Sci. 27(4), 3911–3917 (2016)

    Google Scholar 

  34. L. Zhou, X. Hu, S. Wu, Effects of deposition temperature on the performance of CdS films with chemical bath deposition. Surf. Coat. Technol. 228, S171–S174 (2013)

    Article  Google Scholar 

  35. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  Google Scholar 

  36. F. Aslan, A. Göktas, A. Tumbul, Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers. Mater. Sci. Semicond. Process. 43, 139 (2016)

    Article  Google Scholar 

  37. V. Ramya, K. Neyvasagam, R. Chandramohan et al., Studies on chemical bath deposited CuO thin films for solar cells application. J. Mater. Sci. 26, 8489 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Oscar Gomez-Daza and Mrs. Yareli Colín for general assistance, Mr. Jose Campos, Mr. Rogelio Morán for morphological characterization, Dr. Patricia Altuzar and M. Maria Luisa Ramon for XRD analysis. The financial support for this work was given by CONACYT-Mexico through the project 236978 and project CeMIESol-35.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Odín Reyes or P. J. Sebastian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, O., Maldonado, D., Escorcia-García, J. et al. Effect of temperature and pH on direct chemical bath deposition of cuprous oxide thin films. J Mater Sci: Mater Electron 29, 15535–15545 (2018). https://doi.org/10.1007/s10854-018-9110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9110-4

Navigation