Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 18, pp 15529–15534 | Cite as

Electrochemical, microstructural, compositional and optical characterization of copper oxide and copper sulfide thin films

  • Sethuramachandran Thanikaikarasan
  • Rajagembu Perumal
  • Krishnasamy Sankaranarayanan
  • Thaiyan Mahalingam


In this work, we have focused the effect of substrate on electrochemically grown copper oxide and copper sulfide thin films. The prepared films have been subjected to X-ray diffraction, scanning electron microscopy, Energy dispersive X-ray analysis, UV–Visible spectroscopic techniques for the determination crystalline nature, morphology, composition and optical properties. X-ray diffraction results indicated the deposited films exhibited cubic structure with most reflection along (110), (220) planes for copper oxide and copper sulfide. Scanning electron microscopy along with energy dispersive analysis by X-rays showed that films with uniform morphology and nearly stoichiometry have been obtained for film obtained on SnO2 substrate. Optical absorption and transmittance measurements showed that the deposited films exhibited band gap value of 2.28 and 2.45 eV for copper oxide and copper sulfide.



The corresponding author (Dr. S. Thanikaikarasan) gratefully acknowledge the financial support received from the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS-DAE), Mumbai, India with File No. 2012/34/13/BRNS/No.166 for carrying out this research work.


  1. 1.
    Kirk-Othemer, Encyclopedia of Chemical Technology, Vol. 20, (Wiley, New York, 1982)Google Scholar
  2. 2.
    A.M. Selman, M.A. Mahdi, Z. Hassan, Physica E 94, 32 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Dolai, S. Das, S. Hussain, R. Bhar, A.K. Pal, Vacuum 141, 296 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S.U. Rahman, R.D. Bold, D. Gibson, Vacuum 144, 217 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Liu, M. Xu, X. Zhang, W. Wang, X. Feng, A. Song, Appl. Surf. Sci. 435, 305 (2018)CrossRefGoogle Scholar
  6. 6.
    A. Karapetyan, A. Reymers, S. Giorgio, C. Fauquet, L. Sajti, S. Nitsche, M. Nersesyan, V. Gevorgyan, W. Marine, J. Lumin. 159, 325 (2015)CrossRefGoogle Scholar
  7. 7.
    M.A. Badillo-Ávila, R. Castanedo-Pérez, G. Torres-Delgado, J. Márquez-Marín, O. Zelaya-Ángel, Mater. Sci. Semicond. Process. 74, 203 (2018)CrossRefGoogle Scholar
  8. 8.
    D. Ozaslan, O.M. Ozkendir, M. Gunes, Y. Ufuktepe, C. Gumus, Optik 157, 1325 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Patil, D. Sharma, A. Dive, S. Mahajan, R. Sharma, Proc. Manuf. 20, 505 (2018)Google Scholar
  10. 10.
    F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Proc. Chem. 19, 15 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Thanikaikarasan (in press) Ionics. (
  12. 12.
    P. Jeyakumar, S. Thanikaikarasan, B. Natarajan, J. Mater. Sci. Mater. Electron. 28, 2538 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Thanikaikarasanan, T. Mahalingam, M. Raja, S. Velumani, Mater. Sci. Semicond. Proc. 37, 215 (2015)CrossRefGoogle Scholar
  14. 14.
    Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003, Pennsylvania. PDF No. 77-0199Google Scholar
  15. 15.
    Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003, PDF No. 20-1225, PennsylvaniaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Saveetha School of EngineeringSaveetha Institute of Medical and Technical SciencesChennaiIndia
  2. 2.School of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations