Skip to main content
Log in

Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Li3Mg2NbO6 (LMN) ceramics were synthesized through the traditional solid-state process. The sintering characteristics, microwave dielectric properties and the morphology of LMN ceramics with various BaCu(B2O5) (BCB) addition were investigated. No secondary phase was found in the BCB added ceramics. Low-level doping of BCB (≤ 2 wt%) could significantly improve the densification of LMN ceramics due to the liquid phase sintering mechanism. The dielectric constant and the quality factor value had the same variation trend with bulk density. The temperature coefficient of resonant frequency (τf) value presented descending tendency as the BCB content increased. Besides, the X-ray diffraction result and the back scattered electron image of the sample confirmed the chemical compatibility silver electrodes. The optimum microwave dielectric of εr = 14.27, Q × f = 55521 GHz and τf = − 18.2 ppm/°C was obtained, when the LMN ceramics with 0.1 wt% BCB sintered at 950 °C for 4 h, which could be a promising candidate material for low temperature co-fired ceramics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Article  Google Scholar 

  2. B.K. Kim, D.W. Lee, S.H. Key et al., Calcium aluminoborosilicate-based dielectrics containing CaCu3Ti4O12 as a filler. J. Am. Ceram. Soc. 93(8), 2334–2338 (2010)

    Article  Google Scholar 

  3. P.S. Anjana, T. Joseph, M.T. Sebastian, Microwave dielectric properties of (1 − x) CeO2−xRE2O3 (RE = La, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb and Y) (0 ≤ x ≤ 1) ceramics. J. Alloys Compd. 490(1), 208–213 (2010)

    Article  Google Scholar 

  4. M. Dong, Z. Yue, H. Zhuang et al., Microstructure and microwave dielectric properties of TiO2-doped Zn2SiO4 ceramics synthesized through the sol–gel process. J. Am. Ceram. Soc. 91(12), 3981–3985 (2008)

    Article  Google Scholar 

  5. M.T. Sebastian, H. Wang, H. Jantunen, Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20(3), 151–170 (2016)

    Article  Google Scholar 

  6. M.H. Kim, Y.H. Jeong, S. Nahm et al., Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3) O3 ceramics. J. Eur. Ceram. Soc. 26(10), 2139–2142 (2006)

    Article  Google Scholar 

  7. Z. Weng, R. Guan, Z. Xiong, Effects of the ZBS addition on the sintering behavior and microwave dielectric properties of 0.95 Zn2SiO4−0.05 CaTiO3 ceramics. J. Alloys Compd. 695, 3517–3521 (2017)

    Article  Google Scholar 

  8. J. Bi, Y. Niu, H. Wu, Li4Mg3Ti2O9: a novel low-loss microwave dielectric ceramic for LTCC applications. Ceram. Int. 43(10), 7522–7530 (2017)

    Article  Google Scholar 

  9. L.L. Yuan, J.J. Bian, Microwave dielectric properties of the lithium containing compounds with rock salt structure. Ferroelectrics 387(1), 123–129 (2009)

    Article  Google Scholar 

  10. J. Bian, Z. Liang, L. Wang, Structural evolution and microwave dielectric properties of Li(3−3x)M4xNb(1−x)O4 (M = Mg, Zn; 0 ≤ x ≤ 0.9). J. Am. Ceram. Soc. 94(5), 1447–1453 (2011)

    Article  Google Scholar 

  11. Y. Zhao, P. Zhang, Microstructure and microwave dielectric properties of low loss materials Li3(Mg0.95A0.05)2NbO6 (A = Ca2+, Ni2+, Zn2+, Mn2+) with rock-salt structure. J. Alloys Compd. 658, 744–748 (2016)

    Article  Google Scholar 

  12. P. Zhang, L. Liu, M. Xiao et al., A novel temperature stable and high Q microwave dielectric ceramic in Li3(Mg1– xMnx)2NbO6 system. J. Mater. Sci.: Mater. Electron. 28, 12220–12225 (2017)

  13. T. Zhang, R. Zuo, Effect of Li2O–V2O5 addition on the sintering behavior and microwave dielectric properties of Li3(Mg1−xZnx)2 NbO6 ceramics. Ceram. Int. 40(10), 15677–15684 (2014)

    Article  Google Scholar 

  14. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  Google Scholar 

  15. T. Zhang, R. Zuo, C. Zhang, Preparation and microwave dielectric properties of Li3(Mg0.92Zn0.08)2NbO6–Ba3(VO4)2 composite ceramics for LTCC applications. Mater. Res. Bull. 68, 109–114 (2015)

    Article  Google Scholar 

  16. P. Zhang, J. Liao, Y. Zhao et al., Effects of B2O3 addition on the sintering behavior and microwave dielectric properties of Li3Mg2NbO6 ceramics. J. Mater. Sci.: Mater. Electron. 28(1), 686–690 (2017)

    Google Scholar 

  17. M. Guo, S. Gong, G. Dou et al., A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures. J. Alloys Compd. 509(20), 5988–5995 (2011)

    Article  Google Scholar 

  18. B.A.O. Yan, G. Chen, M. Hou et al., Microwave dielectric properties and compatibility with silver of low-fired Li2MgTi3O8 ceramics with Li2O-MgO-B2O3 frit. Trans. Nonferrous Met. Soc. China 23(11), 3318–3323 (2013)

    Article  Google Scholar 

  19. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8(4), 402–410 (1960)

    Article  Google Scholar 

  20. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18(8), 476–485 (1970)

    Article  Google Scholar 

  21. S. Yu, B. Tang, S. Zhang et al., Temperature stable high-Q microwave dielectric ceramics in (1−x) BaTi4O9–xBaZn 2Ti4O11 system. Mater. Lett. 67(1), 293–295 (2012)

    Article  Google Scholar 

  22. Q. Liao, L. Li, X. Ren et al., A new microwave dielectric material Ni0.5Ti0.5NbO4. Mater. Lett. 89, 351–353 (2012)

    Article  Google Scholar 

  23. C.L. Huang, S.S. Liu, Characterization of extremely low loss dielectrics (Mg0. 95Zn0. 05)TiO3 at microwave frequency. Jpn. J. Appl. Phys. 46(1R), 283 (2007)

    Article  Google Scholar 

  24. M. Hou, G. Chen, Y. Bao et al., Low-temperature firing and microwave dielectric properties of LBS glass-added Li2ZnTi3O8 ceramics with TiO2. J. Mater. Sci.: Mater. Electron. 23(9), 1722–1727 (2012)

    Google Scholar 

  25. L. Fang, Y. Tang, D. Chu et al., Effect of B2O3 addition on the microstructure and microwave dielectric properties of Li2CoTi3O8 ceramics. J. Mater. Sci.: Mater. Electron. 23(2), 478–483 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Hu, Y., Bao, S. et al. Low temperature sintering and microwave dielectric properties of Li3Mg2NbO6 ceramics. J Mater Sci: Mater Electron 29, 15523–15528 (2018). https://doi.org/10.1007/s10854-018-9107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9107-z

Navigation