Red-emitting carbon dots phosphors: a promising red color convertor toward warm white light emitting diodes

  • Rongrong Yuan
  • Jianming Liu
  • Weidong Xiang
  • Xiaojuan Liang


Various luminescent carbon materials are artificially synthesized and as admirable fluorescent materials because of the increased research of carbon nanodots (CDs). Herein, a novel solvent-dependent red CDs (rCDs) is introduced through solvothermal method. The as-prepared rCDs remain benzene structure and possess abundant surface function groups that endow them well solubility in various solvents. Furthermore, multicolor luminescence are observed when rCDs are dissolved in different solvents, and the emission wavelength of these materials can be well-tuned from 475 to 624 nm, which presents intensity solvent-dependent properties. Red luminescence carbon phosphors are successfully synthesized by mix rCDs with silica powder. Finally, warm white light emitting diodes (WLEDs) are constructed using rCDs powder with Ce3+: YAG single crystal and blue GaN chips. The results demonstrate that the rCDs can act as red component to modify the correlated color temperature (CCT) and the color rendering index (CRI) of WLEDs .



The authors acknowledge the financial support from National Natural Sciences Foundation of China (Grants No. 51472183). The authors declare that they have no conflict of interest.

Supplementary material

10854_2018_9103_MOESM1_ESM.doc (266 kb)
Supplementary material 1 (DOC 266 KB)


  1. 1.
    H. Ali, S.K. Bhunia, C. Dalal, N.R. Jana, Red fluorescent carbon nanoparticle-based cell imaging probe. ACS Appl. Mater. Interfaces 8, 9305 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Func. Mater. 22, 4732–4740 (2012)CrossRefGoogle Scholar
  3. 3.
    H.S. Jang, D.Y. Jeon, White light emission from blue and near ultraviolet light-emitting diodes precoated with a Sr3SiO5:Ce3+,Li + phosphor. Opt. Lett. 32, 3444–3446 (2007)CrossRefGoogle Scholar
  4. 4.
    M. Gong, X. Liang, Y. Wang, H. Xu, L. Zhang, W. Xiang, Novel synthesis and optical characterization of phosphor-converted WLED employing Ce:YAG-doped glass. J. Alloys Compd. 664, 125–132 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Uheda, N. Hirosaki, Y. Yamamoto. T. Naito, H. Nakajima, Yamamoto, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid-State Lett. 9, H22–H25 (2006)CrossRefGoogle Scholar
  6. 6.
    C. Guo, D. Huang, Q. Su, Methods to improve the fluorescence intensity of CaS:Eu2+ red-emitting phosphor for white LED. Mater. Sci. Eng. B 130, 189–193 (2006)CrossRefGoogle Scholar
  7. 7.
    L. Wei, C. Lin, M. Fang, G.M. Brik, S. Hu, H. Jiao, R. Liu, A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M=Ge, Si) for white LED applications. J. Mater. Chem. C 3, 1655–1660 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Chen, H. Lian, Y. Wei, X. He, Y. Chen, B. Wang, Q. Zeng, J. Lin, Concentration induced multi-color emission in carbon dots: origination from triple fluorescent centers. Nanoscale 10, 6734–6743 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Fan, X. Guo, Y. Zhang, Y. Lv, J. Zhao, X. Liu, Efficient and stable red emissive carbon nanoparticles with a hollow sphere structure for white light-emitting diodes. ACS Appl. Mater. Interfaces 8, 31863 (2016)CrossRefGoogle Scholar
  10. 10.
    C.X. Li, C. Yu, C.F. Wang, S. Chen, Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. J. Mater. Sci. 48, 6307–6311 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Li, Z. Guo, Y. Zhang, W. Xue, Z. Liu, Blood compatibility evaluations of fluorescent carbon dots. ACS Appl. Mater. Interfaces 7, 19153–19162 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Zhao, C. Chen, L. Lu, F. Yang, X. Yang, A dual-mode colorimetric and fluorometric “light on” sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles. Analyst 140, 8157–8164 (2015)CrossRefGoogle Scholar
  13. 13.
    M.L. Cayuela, M. Soriano, Valcárcel, Strong luminescence of carbon dots induced by acetone passivation: efficient sensor for a rapid analysis of two different pollutants. Anal. Chim. Acta 804, 246 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Li, Z. Kang, Y. Liu, S.T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Gaddam, D. Vasudevan, R. Narayan, K.V. Raju, Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water. RSC Adv. 4, 57137–57143 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Kimura, K. Sakuma, S. Hirafune, K. Asano, Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Appl. Phys. Lett. 90,051109–051103 (2007)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, N. Xiao, N. Gong, H. Wang, X. Shi, W. Gu, L. Ye, One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68, 258–264 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47, 6858–6860 (2011)CrossRefGoogle Scholar
  20. 20.
    S. Qu, D. Zhou, D. Li, W. Ji, P. Jing, D. Han, L. Liu, H. Zeng, D. Shen, Toward efficient orange emissive carbon nanodots through conjugated sp(2)—domain controlling and surface charges engineering. Adv. Mater. 28, 3516 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, Deep ultraviolet to near-infrared emission and photoresponse in layered N-doped graphene quantum dots. ACS Nano. 8, 6312–6320 (2014)CrossRefGoogle Scholar
  22. 22.
    K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, H. Lin, Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew. Chem. 55, 7231–7235 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H. Tsang, X. Yang, S.T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. 49, 4430 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romeroaburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Loukanov, M. Sekiya, N. Yoshikawa, Y. Kobayashi, S. Moriyasu, Nakabayashi, Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging. J. Phys. Chem. C 120, 15869–15874 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wenzhou UniversityWenzhouChina

Personalised recommendations