Advertisement

Facile synthesis via a solvent molecular template and formation mechanism of uniform zinc antimony nanorods

  • Haoran Zhang
  • Xinwei Wang
  • Xinyang Cai
  • Dengkui Wang
  • Jilong Tang
  • Xuan Fang
  • Dan Fang
  • Xiaohui Ma
  • Xiuping Sun
  • Xiaohua Wang
  • Zhipeng Wei
Article
  • 74 Downloads

Abstract

One-dimensional uniform zinc antimonide (ZnSb) nanorods were successfully synthesized via a facile solvothermal method using ethylenediamine (en) as a “shape modifier” for the controlled synthesis of nanorods. These ZnSb nanorods show hexagonal phase and good crystallinity in nature. Also, they exhibited the average size of lengths and diameters for 1.4 µm × 170 nm. Based on the crystal structures and morphologies evolution of ZnSb nanorods, the formation mechanism of ZnSb nanorods has been proposed to be that the nanosized clusters nucleated first and then to the orientation growth depending on en molecular template, namely, a solvent coordinating molecular template mechanism. The electrochemical properties of the ZnSb nanorods are investigated as anodes for lithium-ion battery, which exhibit high reversible lithium storage capacity (478.5 mAh g1 after 200 cycles) and superior electronic conductivity.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61474010, 61574022, 61504012, 61674021, 11674038, 617104011), the Developing Project of Science and Technology of Jilin Province (20160519007JH, 20160101255JC, 20160204074GX, 20170520117JH), and the Innovation Foundation of Changchun University of Science and Technology (XJJLG-2016-11, XJJLG-2016-14).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    M. Remškar, Adv. Mater. 16, 1497–1504 (2004)CrossRefGoogle Scholar
  2. 2.
    Z. Lai, Y. Chen, C. Tan, Chemistry 1, 59–77 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Zhai, L. Li, Y. Ma, Chem. Soc. Rev. 40, 2986–3004 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Leahu, E. Petronijevic, A. Belardini, Adv. Opt. Mater. 5, 1601063 (2017)CrossRefGoogle Scholar
  5. 5.
    J. Tao, Z. Gong, G. Yao, J. Alloys Compd. 689, 451–459 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Tao, Z. Gong, G. Yao, J. Alloys Compd. 688, 605–612 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Tao, M. Zhang, J. Lv, Sci. Adv. Mater. 8, 941–947 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Tao, Z. Gong, G. Yao, Ceram. Int. 42, 11716–11723 (2016)CrossRefGoogle Scholar
  9. 9.
    X. Fuku, N. Matinise, M. Masikini, Mater. Res. Bull. 97, 457–465 (2018)CrossRefGoogle Scholar
  10. 10.
    K. Kaviyarasu, E. Manikandan, M. Maaza, J. Alloys Compd. 648, 559–563 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Fuku, K. Kaviyarasu, N. Matinise, Nanoscale Res. Lett. 11, 386–398 (2016)CrossRefGoogle Scholar
  12. 12.
    P.J. Shaver, J. Blair, Phys. Rev. 141, 649 (1966)CrossRefGoogle Scholar
  13. 13.
    S. Saadat, J. Zhu, M.M. Shahjamali, Chem. Commun. 47, 9849–9851 (2011)CrossRefGoogle Scholar
  14. 14.
    G. Wang, X. Shen, Y. Lu, J. Alloys Compd. 622, 341–346 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Liao, Y. Sun, J. Wang, Electrochim. Acta 211, 11–17 (2016)CrossRefGoogle Scholar
  16. 16.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631–16634 (1993)CrossRefGoogle Scholar
  17. 17.
    P. Fan, W. Fan, Z. Zheng, J. Mater. Sci.-Mater. Electron. 25, 5060–5065 (2014)CrossRefGoogle Scholar
  18. 18.
    P.H.M. Böttger, K. Valset, S. Deledda, J. Eelectron. Mater. 39, 1583–1588 (2010)CrossRefGoogle Scholar
  19. 19.
    C.M. Park, H.J. Sohn, Adv. Mater. 22, 47–52 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Zou, H. Li, Y. Zhang, Nanotechnology 17, S313–S320 (2006)Google Scholar
  21. 21.
    K. Kaviyarasu, D. Sajan, M.S. Selvakumar, J. Phys. Chem. Solids 73, 1396–1400 (2012)CrossRefGoogle Scholar
  22. 22.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, Ceram. Int. 42, 8385–8394 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Kaviyarasu, D. Sajan, P.A. Devarajan, Appl. Nanosci. 3, 529–533 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Wang, D. Yu, Y. Peng, Nanotechnology 14, 748–751 (2003)CrossRefGoogle Scholar
  25. 25.
    R. Li, X. Wang, X. Wang, Nanoscale Res. Lett. 11, 486–491 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Hu, M. Mo, B. Yang, New J. Chem. 27, 1161–1163 (2003)CrossRefGoogle Scholar
  27. 27.
    H. Hu, B. Yang, Q. Li, J. Cryst. Growth 261, 485–489 (2004)CrossRefGoogle Scholar
  28. 28.
    J. Zhu, T. Sun, J. Chen, Chem. Mater. 22, 5333–5339 (2010)CrossRefGoogle Scholar
  29. 29.
    J.P. Heremans, C.M. Thrush, D.T. Morelli, M.C. Wu, Phys. Rev. Lett. 21, 216801–216804 (2002)CrossRefGoogle Scholar
  30. 30.
    F. Yang, K. Liu, K. Hong, D. Reich, P. Searson, C. Chien, Science 254, 1335–1337 (1999)CrossRefGoogle Scholar
  31. 31.
    Z.X. Deng, C. Wang, X.M. Sun, Inorg. Chem. 41, 869–873 (2002)CrossRefGoogle Scholar
  32. 32.
    K. Kombaiah, J.J. Vijaya, L.J. Kennedy, Optik. 135, 190–199 (2017)CrossRefGoogle Scholar
  33. 33.
    G.T. Mola, E.A.A. Arbab, B.A. Taleatu, J. Microsc (Oxford) 265, 214–221 (2017)CrossRefGoogle Scholar
  34. 34.
    L. Fan, Y. Liu, A.G. Tamirat, New J. Chem. 41, 13060–13066 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Saadat, Y.Y. Tay, J. Zhu, Chem. Mater. 23, 1032–1038 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Li, K. Du, Y. Lai, J. Mater. Chem. A. 5, 10843–10848 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Zhu, Y. Zhong, G. Chen, Chem. Commun. 52, 9402–9405 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Tang, W. Zhao, S. Cheng, J. Solid State Chem. 193, 89–93 (2012)CrossRefGoogle Scholar
  39. 39.
    M. Chen, Y. Xie, J. Lu, J. Mater. Chem. 12, 748–753 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.D. Li, H.W. Liao, Y. Ding, Chem. Mater. 10, 2301–2303 (1998)CrossRefGoogle Scholar
  41. 41.
    W. Wang, Y. Geng, Y. Qian, Adv. Mater. 10, 1479–1481 (1998)CrossRefGoogle Scholar
  42. 42.
    P.W. Voorhees, J. Stat. Phys. 38, 231–252 (1985)CrossRefGoogle Scholar
  43. 43.
    J. Du, L. Xu, G. Zou, J. Cryst. Growth 291, 183–186 (2006)CrossRefGoogle Scholar
  44. 44.
    J. Yang, J.H. Zeng, S.H. Yu, Chem. Mater. 12, 3259–3263 (2000)CrossRefGoogle Scholar
  45. 45.
    Y. Li, M. Sui, Y. Ding, Adv. Mater. 12, 818–821 (2000)CrossRefGoogle Scholar
  46. 46.
    Z.X. Deng, L. Li, Y. Li, Inorg. Chem. 42, 2331–2341 (2003)CrossRefGoogle Scholar
  47. 47.
    J. Yao, X. Shen, B. Wang, Electrochem. Commun. 11, 1849–1852 (2009)CrossRefGoogle Scholar
  48. 48.
    L. Liang, Y. Xu, C. Wang, Energy Environ. Sci. 8, 2954–2962 (2015)CrossRefGoogle Scholar
  49. 49.
    Z. Wang, F. Su, S. Madhavi, Nanoscale 3, 1618–1623 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Haoran Zhang
    • 1
  • Xinwei Wang
    • 1
  • Xinyang Cai
    • 1
  • Dengkui Wang
    • 1
  • Jilong Tang
    • 1
  • Xuan Fang
    • 1
  • Dan Fang
    • 1
  • Xiaohui Ma
    • 1
  • Xiuping Sun
    • 1
  • Xiaohua Wang
    • 1
  • Zhipeng Wei
    • 1
  1. 1.State Key Laboratory of High Power Semiconductor Laser, School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchunPeople’s Republic of China

Personalised recommendations