Advertisement

A parametric study for the synthesis of graphene–AgAu nanocomposites: performances as electrode material

  • Zafer Çıplak
  • Nuray Yıldız
Article
  • 69 Downloads

Abstract

Reduced graphene oxide (rGO)/AgAu bimetallic nanoparticle nanocomposites were prepared with one step simultaneous reduction of graphene oxide, silver nitrate (AgNO3) and chloroauric acid (HAuCl4) using glucose as a reducing agent. The synthesized nanocomposites were characterized by ultraviolet–visible spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscope with energy dispersive X-ray line scan analysis. The electrochemical performances of nanocomposites were analyzed by cyclic voltammetry and galvanostatic charge–discharge techniques. The effects of synthesis parameters on the structure and the morphology of graphene–AgAu bimetallic nanoparticle nanocomposites were investigated. The results showed that rGO sheets were successfully reduced and decorated homogenously by AgAu bimetallic nanoparticles with small sizes and narrow particle size distribution, also it was determined, synthesis parameters including reducing agent concentration, alkalinity of the reaction media, the presence of stabilizing agent polyvinylpyrrolidone and reaction temperature had significant effect on the particle size, size distribution and the particle structure of graphene nanosheets decorated with bimetallic nanoparticles. The results showed that rGO/AgAu bimetallic nanoparticle nanocomposite proved to be a promising electrode material for supercapacitors application.

Notes

Acknowledgements

This work was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK; Grant No. 115M456).

References

  1. 1.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  2. 2.
    D. Wei, Y. Liu, Adv. Mater. 22, 3225 (2010)CrossRefGoogle Scholar
  3. 3.
    A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B. Hee, J.-H. Hong, J.Min Ahn, H. Kim, B.J. Zirath, H. van Wees, L. van der Zant, A. Occhipinti, I.A. Di Matteo, T. Kinloch, E. Seyller, X. Quesnel, K. Feng, N. Teo, P. Rupesinghe, J. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, J. Kinaret (2015) Nanoscale 7, 4598CrossRefGoogle Scholar
  4. 4.
    D. Wang, Y. Li, Adv. Mater. 23, 1044 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Duan, R. Wang, Prog. Nat. Sci. Mater. Int. 23, 113 (2013)CrossRefGoogle Scholar
  6. 6.
    S.G. Babu, M. Gopiraman, D. Deng, K. Wei, R. Karvembu, I.S. Kim, Chem. Eng. J. 300, 146 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Xu, M. Hong, Y. Wang, M. Li, H. Li, M.P.N. Nair, C.Z. Li, Sci. Bull. 61, 1525 (2016)CrossRefGoogle Scholar
  8. 8.
    H.W. Tien, Y.L. Huang, S.Y. Yang, J.Y. Wang, C.C.M. Ma, Carbon 49, 1550 (2011)CrossRefGoogle Scholar
  9. 9.
    A. Belahmar, A. Chouiyakh, J. Nanosci. Technol. 2, 81 (2016)Google Scholar
  10. 10.
    C.H. Liu, X.Q. Chen, Y.F. Hu, T.K. Sham, Q.J. Sun, J.B. Chang, X. Gao, X.H. Sun, S.D. Wang, ACS Appl. Mater. Interfaces 5, 5072 (2013)CrossRefGoogle Scholar
  11. 11.
    B. Neppolian, C. Wang, M. Ashokkumar, Ultrason. Sonochem. 21, 1948 (2014)CrossRefGoogle Scholar
  12. 12.
    V.K. Gupta, N. Atar, M.L. Yola, M. Eryilmaz, H. Torul, U. Tamer, I.H. Boyaci, Z. Üstündaǧ, J. Colloid Interface Sci. 406, 231 (2013)CrossRefGoogle Scholar
  13. 13.
    J. Huang, J. Tian, Y. Zhao, S. Zhao, Sens. Actuators B 206, 570 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.H. Chen, R. Kirankumar, C.L. Kao, P.Y. Chen, Electrochim. Acta 205, 124 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Wu, L. Zhang, J. Gao, Y. Liu, C. Gao, J. Yan, J. Mater. Chem. A 1, 7384 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Qin, X. Dai, X. Zhang, X. Huang, H. Sun, D. Gao, Y. Yu, P. Zhang, Y. Jiang, H. Zhuo, A. Jin, H. Wang, J. Mater. Chem. A 4, 3865 (2016)CrossRefGoogle Scholar
  17. 17.
    N. Atar, T. Eren, B. Demirdögen, M.L. Yola, M.O. Çağlayan, Ionics 21, 2285 (2015)CrossRefGoogle Scholar
  18. 18.
    Q. Shi, G. Diao, S. Mu, Electrochim. Acta 133, 335 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Wang, J. Liu, X. Wu, Z. Tong, Z. Deng, Nanotechnology 24, (2013)Google Scholar
  20. 20.
    C. Zhu, S. Guo, Y. Fang, S. Dong, ACS Nano 4, 2429 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Adv. Mater. 20, 4490 (2008)CrossRefGoogle Scholar
  22. 22.
    O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, J. Mater. Chem. 22, 13773 (2012)CrossRefGoogle Scholar
  23. 23.
    D. He, L. Shen, X. Zhang, Y. Wang, N. Bao, H.H. Kung, AIChE J. 60, 2757 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Li, J. Wen, R. Yu, C. Bai, Y. Xu, Z.H. Liu, S. Sun, RSC Adv. 5, 26856 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Luo, L. Zhu, Y. Huang, H. Tang, Synth. Met. 175, 88 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Liu, T. Li, Y. Liu, G. Qin, X. Wang, T. Chen, Nanoscale Res. Lett. 11, 211 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Quan, Y. Shao, C. Hou, Q. Zhang, H. Wang, Y. Li, Mater. Sci. Eng. B 178, 769 (2013)CrossRefGoogle Scholar
  28. 28.
    R.K. Upadhyay, N. Soin, G. Bhattacharya, S. Saha, A. Barman, S.S. Roy, Mater. Lett. 160, 355 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Yoon, I. In, J. Mater. Sci. 46, 1316 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Wang, X. Qiao, J. Chen, X. Wang, S. Ding, Mater. Chem. Phys. 94, 449 (2005)CrossRefGoogle Scholar
  31. 31.
    M.P. Mallin, C.J. Murphy, Nano Lett. 2, 1235 (2002)CrossRefGoogle Scholar
  32. 32.
    P.-G. Ren, D.-X. Yan, X. Ji, T. Chen, Z.-M. Li, Nanotechnology 22, 55705 (2011)CrossRefGoogle Scholar
  33. 33.
    H.J. Chu, C.Y. Lee, N.H. Tai, Carbon 80, 725 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Sadhukhan, T.K. Ghosh, D. Rana, I. Roy, A. Bhattacharyya, G. Sarkar, M. Chakraborty, D. Chattopadhyay, Mater. Res. Bull. 79, 41 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Feng, W. Zhou, G. Guan, C. Li, D. Zhang, Y. Xiao, L. Zheng, W. Zhu, J. Mater. Chem. 22, 3982 (2012)CrossRefGoogle Scholar
  36. 36.
    N.I. Ikhsan, P. Rameshkumar, N.M. Huang, Electrochim. Acta 192, 392 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  38. 38.
    T. Som, B. Karmakar, Nano Res. 2, 607 (2009)CrossRefGoogle Scholar
  39. 39.
    D.S. Sheny, J. Mathew, D. Philip, Spectrochim. Acta A 79, 254 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Tang, F. Duan, M. Chen, J. Mater. Sci. 28, 7769 (2017)Google Scholar
  41. 41.
    L. Yuan, C. Wan, X. Ye, F. Wu, Electrochim. Acta 213, 115 (2016)CrossRefGoogle Scholar
  42. 42.
    V. Veeramani, B. Dinesh, S.-M. Chen, R. Saraswathi, J. Mater. Chem. A 4, 3304 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Wang, Q. Su, J. Mater. Sci. 27, 4752 (2016)Google Scholar
  44. 44.
    A. Bello, M. Fabiane, D. Dodoo-Arhin, K.I. Ozoemena, N. Manyala, J. Phys. Chem. Solids 75, 109 (2014)CrossRefGoogle Scholar
  45. 45.
    B. Ankamwar, P. Das, U.K. Sur, Indian J. Phys. 90, 391 (2016)CrossRefGoogle Scholar
  46. 46.
    Y.J. Oh, J.J. Yoo, Y. Il Kim, J.K. Yoon, H.N. Yoon, J.H. Kim, S.B. Park, Electrochim. Acta 116, 118 (2014)CrossRefGoogle Scholar
  47. 47.
    K. Zhang, L. Mao, L.L. Zhang, H.S. On Chan, X.S. Zhao, J. Wu, J. Mater. Chem. 21, 7302 (2011)CrossRefGoogle Scholar
  48. 48.
    Y. Chen, Z. Zhang, Z. Huang, H. Zhang, Int. J. Hydrogen Energy 42, 7186 (2017)CrossRefGoogle Scholar
  49. 49.
    G. Zhang, Y. Kuang, J. Liu, Y. Cui, J. Chen, H. Zhou, Electrochem. Commun. 12, 1233 (2010)CrossRefGoogle Scholar
  50. 50.
    D. Zheng, C. Hu, T. Gan, X. Dang, S. Hu, Sens. Actuators B 148, 247 (2010)CrossRefGoogle Scholar
  51. 51.
    W. Li, L. Kuai, Q. Qin, B. Geng, J. Mater. Chem. A 1, 7111 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations